Hostname: page-component-f7d5f74f5-qghsn Total loading time: 0 Render date: 2023-10-02T12:28:47.979Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Ultrahigh acceleration of plasma by picosecond terawatt laser pulses for fast ignition of fusion

Published online by Cambridge University Press:  09 March 2012

P. Lalousis*
Institute of Electronic Structure and Laser FORTH, Heraklion, Crete, Greece
I.B. Földes
KFKI-Research Institute for Particle and Nuclear Physics, Budapest, Hungary
H. Hora
University of New South Wales, Sydney, Australia
Address correspondence and reprint request to: P. Lalousis, Institute of Electronic Structure and Laser FORTH, Heraklion, Crete, Greece. E-mail:


A fundamental different mechanism dominates laser interaction with picosecond-terawatt pulses in contrast to the thermal-pressure processes with ns pulses. At ps-interaction, the thermal effects are mostly diminished and the nonlinear (ponderomotive) forces convert laser energy instantly with nearly 100% efficiency into the space charge neutral electron cloud, whose motion is determined by the inertia of the attached ion cloud. These facts were realized only by steps in the past and are expressed by the ultrahigh plasma acceleration, which is more than few thousand times higher than observed by any thermokinetic mechanism. The subsequent application for side-on ignition of uncompressed fusion fuel by the ultrahigh accelerated plasma blocks is studied for the first time by using the genuine two-fluid hydrodynamics. Details of the shock-like flame propagation can be evaluated for the transition to ignition conditions at velocities near 2000 km/s for solid deuterium-tritium.

Research Article
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mima, K., Miyanaga, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norrays, P.A., Setsuhara, Y., Takagi, M. & Yamanaka, M. (1991). High-density compression experiments at ILE Osaka. Laser Part. Beams 9, 193207.CrossRefGoogle Scholar
Badziak, J., Kozlov, A.A., Makowksi, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser Part. Beams 23, 143148.CrossRefGoogle Scholar
Bobin, J.L. (1974). Nuclear fusion reactions in fronts propagating in solid DT. In Laser Interaction and Related Plasma Phenomena (Schwarz, H. and Hora, H., eds.), Vol. 4B. New York: Plenum Press, 465494.CrossRefGoogle Scholar
Boreham, B.W. & Hora, H. (1978). Debye length discrimination of nonlinear laser forces acting on electrons in tenuous plasmas. Phys. Rev. Lett. 42, 776779.CrossRefGoogle Scholar
Betti, R. (2010). ICF ignition and hydro-equivalent implosions – Edward Teller Lecture 2009. J. Phys.Conf. Proc. 244, 012004/16.Google Scholar
Campbell, E.M. (2005). High Intensity Laser-Plasma Interaction and Applications to Inertial Fusion and High Energy Density Physics. Doctor of Science thesis. Australia: University of Western Sydney/Australia.Google Scholar
Chen, F.F. (1974). Physical mechanisms for laser-plasma parametric instabilities. In Laser Interaction and Related Plasma Phenomena (Schwarz, H. J. and Hora, H., eds.). New York: Plenum Press, Vol. 3A, 291313CrossRefGoogle Scholar
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 413422.CrossRefGoogle Scholar
Eliezer, S. & Hora, H. (1989). Double-layers in laser-produced plasmas. Phys. Rpt. 172, 339407.CrossRefGoogle Scholar
Eliezer, S. & Martinez-Val, J.-M. (2011). The comeback of shock waves in inertial fusion energy. Laser Part. Beams 29, 175182.CrossRefGoogle Scholar
Földes, I.B., Bakos, J.S., Gál, K., Juhász, Z., Kedves, M.A., Kocsis, G., Szatmári, S. & Veres, G. (2000). Properties of High Harmonics Generated by Ultrashort UV Laser Pulses on Solid Surfaces. Laser Phys. 10, 264269.Google Scholar
Gaillard, S.A., Kluge, T., Flippo, K.A., Bussmann, M., Gall, B., Lockard, D., Geissel, M., Offermann, D.T., Schollmeier, M., Sentoku, Y. & Cowan, T.E. (2011). Increase laser-accelerated proton energie via direct laser-light-pressure acceleration of electrons in microcone targets. Phys.Plasmas 18, 056710.CrossRefGoogle Scholar
Glenzer, S.H., Moses, E., et al. (2011). Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums. Phys. Rev. Lett. 106, 085004/15.Google ScholarPubMed
Haldrane, A.G. & May, R.M. (2011). Systemic risks in banking ecosystems. Nat. 469, 352355.Google Scholar
Hora, H. (1969). Nonlinear confining and deconfining forces associated with interaction of laser radiation with plasma. Phys. Fluids 12, 182188.CrossRefGoogle Scholar
Hora, H. (1971). Nonlinear force driven plasma blocks for impact fusion. German Patent 1,933,409.Google Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.CrossRefGoogle Scholar
Hora, H. (1981). Physics of Laser Driven Plasmas. New York: John Wiley.Google Scholar
Hora, H. (1983). Interpenetration burn for controlled inertial confinement fusion by nonlinear forces. Atomkernenergie 42, 710.Google Scholar
Hora, H. (1985). The transient electrodynamic forces at laser-plasma Interaction. Phys. Fluids 28, 37053706.CrossRefGoogle Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser plasma interaction II. Czechosl. J. Phys. 53, 199217.CrossRefGoogle Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.CrossRefGoogle Scholar
Hora, H. (2006). Smoothing and stochastic pulsation at high power laser-plasma interaction. Laser and Particle Beams 24, 455463.CrossRefGoogle Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Hora, H. (2011). Distinguished celebration for Professor George H. Miley by the University of Illinois, Urbana, Illinois, USA. Laser Particle Beams 29, 275278.CrossRefGoogle Scholar
Hora, H. (2012). Fundamental difference between picoseconds and nanosecond laser interaction with plasma: Ultrahigh plasma block acceleration links with electron collective ion acceleration of ultra-thin foils. Laser Part. Beams doi:10.1017/S0263034611000784.CrossRefGoogle Scholar
Hora, H., Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, H., Yamanaka, C., Yamanaka, M. & Yamanaka, T. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. J. Plasma Phys. 60, 743760.CrossRefGoogle Scholar
Hora, H., Badziak, J., Boody., F., Höpfl, R., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002 a). Effects of picosecond and ns laser pulses for giant ion source. Optics Comm. 207, 333338.CrossRefGoogle Scholar
Hora, H., Badziak, J., Read, M.N., Li, Yu-Tong, Liang, Tian-Jiao, Liu Hong, Sheng Zheng-Ming, Zhang, Jie, Osman, F., Miley, G.H., Zhang, Weiyan, He, Xiantu, Peng, Hansheng, Glowacz, S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven beams of very high intensity Phys.Plasmas 14, 072701/17.CrossRefGoogle Scholar
Hora, H., Castillo, R., Hoffmann, D.H.H., Miley, G.H. & Lalousis, P. (2011 b). Laser acceleration up to black holes and B-meson decay. Proceedings of International Conference on Physics in Intense Fields PIF2010, Itakura, K., Osi, S. & Takahashi, T. eds., Tsukuba: High Energy Accelerator Research Orgnaisation KEK Proceedings No. 2010-12, Geb. 2011, p. 97100.Google Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double-layers produced by nonlinear forces in laser-produced plasmas. Phys. Rev. Lett. 53, 16501652.CrossRefGoogle Scholar
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H. & He, X. (2008). Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101/13.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Ghoranneviss, M., Malekynia, B. & Azizi, N. (2009). Laser optical path to nuclear energy without radioactivity: Fusion of hydrogen-boron by nonlinear force driven plasma blocks. Opt. Commun. 282, 41244126.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Ghoranneviss, M., Malekynia, B., Azizi, N. & He, X. (2010). Fusion energy without radioactivity: Laser ignition of solid density hydrogen-boron(11) fuel. Ener. Environ. Sci. 3, 479486.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Lalousis, P., Flippo, K., Gaillard, S.A., Offermann, D., Fernandes, J., Yang., X., Murakami, M., Castillo, C., Stait-Gardner, T., Le Cornu, B. & Pozo, J. (2011 a). Ultrahigh acceleration of plasma blocks from direct converting laser energy into motion by nonlinear forces. Proceedings of the International Quantum Electronics Conference (IQEC) Sydney 28 August-1 September 2011 p. 878880Google Scholar
Hora, H., Miley, G.H., Flippo, K., Lalousis, P., Castillo, R., Yang, X., Malekynia, B. & Ghoranneviss, M. (2011 c). Review about acceleration of plasma by nonlinear forces from picoseconds laser pulses and block generated fusion flame in uncompressed fuel. Laser Part. Beams 29, 353.CrossRefGoogle Scholar
Hora, H., Peng, H., Zhang, W. & Osman, F. (2002 b). New skin depth plasma interaction by ps-tw laser pulses and consequences for fusion energy, in high power lasers and applications II. SPIE 4914, 3748.Google Scholar
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertially confined DT plasma due to reheat. Zeitschrift f. Naturforschung A33, 890894.Google Scholar
Kaiser, W., Oppower, H. & Puell, B.H. (1966). Laser driven impact fusion. German Patent 1,279,859.Google Scholar
Kalashnikov, M.P., Nickles, P.V., Schlegel, T., Schnuerer, M., Billhardt, F., Will, I. & Sandner, W. (1994). Dynamics of laser-plasma interaction at 1018W/cm2. Phys. Rev. Lett. 73, 260263.CrossRefGoogle ScholarPubMed
Kaluza, M., Schreiber, J., Santala, M.I.K., Tsakiris, G.D., Eidmann, K., Meyer-Ter-Vehn, J. & Witte, K. (2004). Influence of the laser prepulse on proton acceleration in thin foil experiments. Phys. Rev. Lett. 93, 045003.CrossRefGoogle ScholarPubMed
Karasik, M., Weaver, J.L., Aglitskiy, , Watari, T., Arikawa, Y., Sakaiya, T., Oh, J., Velikowitch, A.L., Zaleasak, S.T., Bates, J.W., Obenschain, S.Po., Schmitt, A.J., Murakami, M. & Azechi, H.Y. (2010). Acceleration to high velocities and heating by impact using Nike KrF Laser. Phys. Plasmas 17, 056317.CrossRefGoogle Scholar
Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M. & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 10571060.CrossRefGoogle Scholar
Kirkpatrick, R.C. & Wheeler, J.A. (1981). The physics of DT ignition in small fusion targets. Nucl.Fusion 21, 398.Google Scholar
Klimo, O. & Limpouch, J. (2006). Particle simulation of acceleration of quasineutral plasmas blocks by short laser pulses. Laser Part. Beams 24, 107112.CrossRefGoogle Scholar
Lalousis, P. & Hora, H. (1983). First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser Part. Beams 1, 283304.CrossRefGoogle Scholar
Linlor, W.I. (1963). Ion energies produced by giant laser pulse. Appl. Phys. Lett. 3, 210211.CrossRefGoogle Scholar
May, R.M. (1972). Will large complex systems be stable? Nat. 238, 413414.CrossRefGoogle Scholar
Meyerhofer, D.D., Knauer, J.P., Mcnaught, S.J. & More, C.I. (1996). Observation of relativistic mass shift effects during high-intensity laser–electron interactions. J. Opt. Soc. Am. B 13, 113117.CrossRefGoogle Scholar
Moses, E., Miller, G.H. & Kauffman, R.L. (2006). The ICF status and plans in the United States. J. de Phys. IV 133, 916.Google Scholar
Mourou, G. & Tajima, T. (2002). Ultraintense lasers and their applications. In Inertial Fusion Science and Applications 2001 (Tanaka, V.R., Meyerhofer, D.D., Meyer-ter-Vehn, J., Eds.). Paris: Elsevier, pp. 831839.Google Scholar
Moustaizis, S., Hora, H., Miley, G.H., Lalousis, P. & Castillo, R. (2011). Experimental problems with very high contrast and laser beam smoothing for impact fusion and block ignition. Inertial Fusion Sciences and Applications Sept 12-16 2011 Bordeaux, Book of Abstracts, Mora, P., Tanaka, K.A. and Moses, E. eds. P.Tu.18 (paper submitted to European Physical Journal).Google Scholar
Murakami, M., Nagatomo, H., Azechi, H., Ogando, F., Perlado, M. & Eliezer, S. (2006). Innovative ignition scheme for ICF impact fast ignition. Nucl. Fusion 46, 99103.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Yazdani, E., Cang, Y. & Hora, H. (2010). Dielectric magnifying of plasma blocks by nonlinear force acceleration and with delayed electron heating. Phys. Plasmas 17, 113108/15.CrossRefGoogle Scholar
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas. Phys. Plasmas 3, 47124716.CrossRefGoogle Scholar
Schlüter, A. (1950). Dynamik des Plasmas – I: Grundgleichungen, Plasma in gekreutzten Feldern (English translation here). Zeitschrift f. Naturforschung A 5, 7278.Google Scholar
Soures, J.M., Mccrory, R.L., Vernon, C.P., Babushki, A., Bahr, R.E., Boehli, T.R., Boni, R., Bradlay, D.K., Brown, D.L., Craxton, R.S., Delettrez, J.A., Donaldson, W.R., Epstein, R., Jaanimagi, P.A., Jacobs, S.D., Kearney, K., Keck, R.L., Kelly, J.H., Kessler, T.J., Kremes, R.L., Knauaer, J.P., Kumpan, S.A., Letzring, S.A., Lonobile, D.J., Loucks, S.J., Lund, L.D., Marshall, F.J., Mckenty, P.W., Meyerhofer, D.D., Morse, S.F.B., Okishev, A., Papernov, S., Pien, G., Seka, W., Short, R., Shoup Iii, M.J., Skeldon, S., Skoupski, S., Schmid, A.W., Smith, D.J., Swmales, S., Wittman, M. & Yaakobi, B. (1996). Direct-drive laser-fusion experiments with the OMEGA, 60-beam, >40 kJ, ultraviolet laser system. Phys. Plasmas 3, 21082112.CrossRefGoogle Scholar
Storm, E. (1986). Press Conference Lawrence Livermore National Laboratory, 16 January,Google Scholar
Storm, E., Lindl, J.D., Campbell, E.M., Bernat, T.P., Coleman, I.W., Emmett, J.L., Hogan, W.J., Horst, Y.T., Krupke, W.F. & Lowdermilk, W.H. (1988). Progress in laboratory high-gain ICF: Prgress for the future Livermore: LLNL Report 47312 (August).Google Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.CrossRefGoogle Scholar
Szatmári, S. & Schäfer, F.P. (1988). Simplified laser system for the generation of 60 fs pulses at 248 nm. Opt. Commun. 68, 196201.CrossRefGoogle Scholar
Szatmári, S. (1994). High-brightness ultraviolet excimer lasers. Appl. Phys. B 58, 211.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition of high-gain with ultrapowerfull lasers. Phys. Plasmas 1 16261634.CrossRefGoogle Scholar
Teller, E. (2001). Memoirs. Cambridge, MA: Perseus Publishing.Google Scholar
Teubner, U., Uschmann, I., Gibbon, P., Altenbernd, D., Förster, E., Feurer, T., Theobald, W., Sauerbrey, R., Hirst, G., Miley, M.K., Lister, J. & Neely, D. (1996). Absorption and hot electron production by high intensity femtosecond uv-laser pulses in solid targets. Phys. Rev. E 54, 41674177.CrossRefGoogle ScholarPubMed
Wilks, S.C., Kruer, W.L., Tabak, M. & Landgon, A.B. (1991). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed
Veres, G., Kocsis, G., Rácz, E. & Szatmári, S. (2004). Doppler shift of femotsecond pulses from solid density plasmas. Appl. Physics B 78, 635638.CrossRefGoogle Scholar
YAmanaka, C. & Nakai, S. (1986). Thermonuclear neutron yield of 1012 achieved with Gekko XII green laser. Nat. 319, 757759.CrossRefGoogle Scholar
Yang, X., Miley, G.H., Flippo, K.A. & Hora, H. (2011). Energy enhancement for deuteron beam fast ignition of a pre-compressed inertial confinement fusion (ICF) target. Phys. Plasmas 18, O32703/15.CrossRefGoogle Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, Lang, Li, Z.H., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E 57, 37463752.CrossRefGoogle Scholar