Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-ttsf8 Total loading time: 0.258 Render date: 2021-08-04T08:51:21.307Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Target implosion uniformity in heavy-ion fusion

Published online by Cambridge University Press:  28 November 2016

T. Karino
Affiliation:
Utsunomiya University, Utsunomiya, Graduate school of engineering, Tochigi 321-8585, Japan
S. Kawata
Affiliation:
Utsunomiya University, Utsunomiya, Graduate school of engineering, Tochigi 321-8585, Japan
S. Kondo
Affiliation:
Utsunomiya University, Utsunomiya, Graduate school of engineering, Tochigi 321-8585, Japan
T. Iinuma
Affiliation:
Utsunomiya University, Utsunomiya, Graduate school of engineering, Tochigi 321-8585, Japan
T. Kubo
Affiliation:
Utsunomiya University, Utsunomiya, Graduate school of engineering, Tochigi 321-8585, Japan
H. Kato
Affiliation:
Utsunomiya University, Utsunomiya, Graduate school of engineering, Tochigi 321-8585, Japan
A. I. Ogoyski
Affiliation:
Varna Technical University, Department of Physics, Varna 9010, Bulgaria
Corresponding

Abstract

In this paper, the robustness of the dynamic instability mitigation mechanism is first examined, and then the instability mitigation phenomenon is demonstrated in a deuterium–tritium (DT) fuel target implosion by wobbling heavy-ion beams (HIBs). The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude and the wavelength of the wobbling perturbation applied. In general instability would emerge from the perturbation of the physical quantity. Normally the perturbation phase is unknown, so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superposition of perturbations imposed actively: if the perturbation is induced by, for example, a driving beam axis oscillation or wobbling, the perturbation phase could be controlled and the instability growth is mitigated by the superposition of the growing perturbations. In this paper, we realize the superposition of the perturbation by the wobbling HIBs’ illumination onto a DT fuel target in heavy-ion inertial fusion (HIF). Our numerical fluid implosion simulations present that the implosion non-uniformity is mitigated successfully by the wobbling HIBs illumination in HIF.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atzeni, S. & Meyer-Ter-vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Oxford Science Pub.CrossRefGoogle Scholar
Bangerter, R.O., Faltens, A. & Seidl, P.A. (2013). Accelerators for Inertial Fusion Energy Prodction. Reviews of Accelerator Science and Technology 6, 85116.Google Scholar
Betti, R., Mccrory, R.L. & Verdon, C.P. (1993). Stability analysis of unsteady ablation fronts. Phys. Rev. Lett. 71, 31313134.CrossRefGoogle ScholarPubMed
Boris, J.P. (1977). Dynamic stabilization of the imploding shell Rayleigh–Taylor instability. Comments Plasma Phys. Control. Fusion 3, 113.Google Scholar
Emery, M.H., Orens, J.H., Gardner, J.H. & Boris, J.P. (1982). Influence of nonuniform laser intensities on ablatively accelerated targets. Phys. Rev. Lett. 48, 253256.CrossRefGoogle Scholar
Kawata, S. (2012). Dynamic mitigation of instabilities. Phys. Plasmas 19, 024503, 13.CrossRefGoogle Scholar
Kawata, S., Iizuka, Y., Kodera, Y., Ogoyski, A.I. & Kikuchi, T. (2009). Robust fuel target in heavy ion inertial fusion. Nucl. Instrum. Methods A 606, 152156.CrossRefGoogle Scholar
Kawata, S., Kurosaki, T., Koseki, S., Noguchi, K., Barada, D., Ogoyski, A.I., Barnard, J.J. & Logan, B.G. (2013). Wobbling heavy ion beam illumination in heavy ion inertial fusion. Plasma Fusion Res. Regul. Articles 8, 3404048, 14.Google Scholar
Kawata, S. & Niu, K. (1984). Effect of nonuniform implosion of target on fusion parameters. J. Phys. Soc. Jpn. 53, 34163426.CrossRefGoogle Scholar
Kawata, S., Sato, T., Teramoto, T., Bandoh, E., Masubichi, Y., Watanabe, H. & Takahashi, I. (1993). Radiation effect on pellet implosion and Rayleigh–Taylor instability in light-ion beam inertial confinement fusion. Laser Part. Beams 11, 757768.CrossRefGoogle Scholar
Moretti, A. (1982). Utilization of high energy, small emittance accelerators for ICF target experiments. Nucl. Instrum. Methods 199, 557561.Google Scholar
Nuckolls, J., Wood, L., Thiessen, A. & Zimmmerman, G. (1972). Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature 239, 139142.CrossRefGoogle Scholar
Piriz, A.R., Piriz, S.A. & Tahir, N.A. (2011). Dynamic stabilization of classical Rayleigh–Taylor instability. Phys. Plasmas 18, 092705, 19.Google Scholar
Piriz, A.R., Prieto, G.R., Diaz, I.M. & Cela, J.J.L. (2010). Dynamic stabilization of Rayleigh–Taylor instability in Newtonian fluids. Phys. Rev. E 82, 026317, 111.CrossRefGoogle ScholarPubMed
Troyon, F. & Gruber, R. (1971). Theory of the dynamic stabilization of the Rayleigh–Taylor instability. Phys. Fluids 14, 20692073.CrossRefGoogle Scholar
Wolf, G.H. (1970). Dynamic stabilization of the interchange instability of a liquid-gas interface. Phys. Rev. Lett. 24, 444446.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Target implosion uniformity in heavy-ion fusion
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Target implosion uniformity in heavy-ion fusion
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Target implosion uniformity in heavy-ion fusion
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *