Hostname: page-component-5d59c44645-lfgmx Total loading time: 0 Render date: 2024-02-28T17:25:14.676Z Has data issue: false hasContentIssue false

Strong electromagnetic pulses generated in high-intensity short-pulse laser interactions with thin foil targets

Published online by Cambridge University Press:  02 November 2017

P. Rączka*
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J.-L. Dubois
CELIA, University of Bordeaux-CNRS-CEA, Talence, France
S. Hulin
CELIA, University of Bordeaux-CNRS-CEA, Talence, France
V. Tikhonchuk
CELIA, University of Bordeaux-CNRS-CEA, Talence, France
M. Rosiński
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
A. Zaraś-Szydłowska
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J. Badziak
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
Address correspondence and reprint requests to: P. Rączka, Division of Laser Plasma, Institute of Plasma Physics and Laser Microfusion, ul. Hery 23, 01-497 Warsaw, Poland. E-mail:


Measurements are reported of the target neutralization current, the target charge, and the tangential component of the magnetic field generated as a result of laser–target interaction by pulses with the energy in the range of 45–92 mJ on target and the pulse duration from 39 to 1000 fs. The experiment was performed at the Eclipse facility in CELIA, Bordeaux. The aim of the experiment was to extend investigations performed for the thick (mm scale) targets to the case of thin (μm thickness) targets in a way that would allow for a straightforward comparison of the results. We found that thin foil targets tend to generate 20–50% higher neutralization current and the target charge than the thick targets. The measurement of the tangential component of the magnetic field had shown that the initial spike is dominated by the 1 ns pulse consistent with the 1 ns pulse of the neutralization current, but there are some differences between targets of different types on sub-ns scale, which is an effect going beyond a simple picture of the target acting as an antenna. The sub-ns structure appears to be reproducible to surprising degree. We found that there is in general a linear correlation between the maximum value of the magnetic field and the maximum neutralization current, which supports the target-antenna picture, except for pulses 100s of fs long.

Research Article
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Aspiotis, J.A., Barbieri, N., Bernath, R., Brown, C.G., Richardson, M. & Cooper, B.Y. (2006). Detection and analysis of RF emission generated by laser-matter interactions. Proc. SPIE 6219, 621908, 1–8.Google Scholar
Bateman, J.E. & Mead, M.J. (2012). Electromagnetic pulse generation in petawatt laser shots. Rutherford Appleton Laboratory Technical Report RAL-TR-2012-005, pp. 116.Google Scholar
Beg, F.N., Wei, M.S., Clark, E.L., Dangor, A.E., Evans, R.G., Gibbon, P., Gopal, A., Lancaster, K.L., Ledingham, K.W.D., McKenna, P., Norreys, P.A., Tatarakis, M., Zepf, M. & Krushelnick, K. (2004). Return current and proton emission from short pulse laser interactions with wire targets. Phys. Plasma 11, 28062813.CrossRefGoogle Scholar
Benjamin, R.F., McCall, G.H. & Ehler, A.W. (1979). Measurement of return current in a laser-produced plasma. Phys. Rev. Lett. 42, 890893.Google Scholar
Bourgade, J.L., Marmoret, R., Dabron, S., Rosch, R., Troussel, P., Villette, B., Glebov, V., Shmayda, W.T., Gomme, J.C., Le Tonquese, Y., Aubard, F., Baggio, J., Bazzoli, S., Bonneau, F., Boutin, J.Y., Caillaud, T., Chollet, C., Combis, P., Disdier, L., Gazave, J., Girard, S., Gontier, D., Jaanimagi, P., Jacquet, H.P., Jadaud, J.P., Landoas, O., Legnedre, J., Leray, J.L., Maroni, R., Meyerhofer, D.D., Miquel, J.L., Marshall, F.J., Masclet-Gobin, I., Pien, G., Raimbourg, J., Reverdin, C., Richard, A., Rubing de Cervens, D., Sangster, C.T., Seaux, J.P., Soullie, G., Stoeckl, C., Thfoin, I., Videau, L. & Zuber, C. (2008). Diagnostics hardening for harsh environment in Laser Mégajoule. Rev. Sci. Instrum. 79, 10F301, 1–8.Google Scholar
Brown, C.G. Jr., Throop, A., Eder, D. & Kimbrough, J. (2008). Electromagnetic pulses at short-pulse laser facilities. J. Phys. Conf. Ser. 112, 032025, 1–4.Google Scholar
Brown, C.G. Jr., Bond, E., Clancy, T., Dangi, S., Eder, D.C., Ferguson, W., Kimbrough, J. & Throop, A. (2010). Assessment and mitigation of electromagnetic pulse (EMP) impacts at short-pulse laser facilities. J. Phys. Conf. Ser. 244, 032001, 1–4.Google Scholar
Brown, C.G. Jr., Ayers, J., Felker, B., Ferguson, W., Holder, J.P., Nagel, S.R., Piston, K.W., Simanovskaia, N., Throop, A.L., Chung, M. & Hilsabeck, T. (2012). Assessment and mitigation of diagnostic-generated electromagnetic interference at the National Ignition Facility. Rev. Sci. Instrum. 83, 10D729, 1–3.Google Scholar
Brown, C.G. Jr., Clancy, T.J., Eder, D.C., Ferguson, W. & Throop, A.L. (2013). Analysis of electromagnetic pulse (EMP) measurements in the National Ignition Facility's target bay and chamber. EPJ Web Conf. 59, 08012, 1–4.Google Scholar
Chen, Z.-Y., Li, J.-F., Li, J. & Peng, Q.-X. (2011). Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited. Phys. Scr. 83, 055503, 1–4.Google Scholar
Cikhardt, J., Krása, J., De Marco, M., Pfeifer, M., Velyhan, A., Krouský, E., Cikhardtová, B., Klír, D., Řezáč, K., Ullschmied, J., Skála, J., Kubeš, P. & Kravárik, J. (2014). Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS. Rev. Sci. Instrum. 85, 103507, 1–6.CrossRefGoogle ScholarPubMed
Consoli, F., De Angelis, R., Andreoli, P., Cristorafi, G., Di Giorgio, G., Bonasera, A., Barbui, M., Mazzocco, M., Bang, W., Dyer, G., Quevedo, H., Hagel, K., Schmidt, K., Gaul, E., Borger, T., Bernstein, A., Martinex, M., Donovan, M., Barbarino, M., Kimura, S., Sura, J., Natowits, J. & Ditmire, T. (2013). Diagnostics improvement in the ABC facility and preliminary tests on laser interaction with light-atom clusters and p-11B targets. Nucl. Instrum. Methods Phys. Res. A720, 149152.Google Scholar
Consoli, F., De Angelis, R., Andreoli, P., Cipriani, M., Cristofari, G., Di Giorgio, G. & Ingenito, F. (2015 a). Experiments on electromagnetic pulse (EMP) generated by laser-plasma interaction in nanosecond regime. Proceedings of the 2015 15th International Conference on Environment and Electrical Engineering (EEEIC 2015), 10–13 June 2015, Rome, Italy, pp. 182187.CrossRefGoogle Scholar
Consoli, F., De Angelis, R., Andreoli, P., Cristofari, G. & Di Giorgio, G. (2015 b). Measurement of the radiofrequency-microwave pulse produced in experiments of laser-plasma interaction in the ABC laser facility. Phys. Proc. 62, 1117.Google Scholar
Consoli, F., De Angelis, R., Duvillaret, L., Andreoli, P.L., Cipriani, M., Cristofari, G., Di Giorgio, G., Ingenito, F. & Verona, C. (2016). Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime. Sci. Rep. 6, 27889, 1–8.CrossRefGoogle ScholarPubMed
De Marco, M., Pfeifer, M., Krousky, E., Krasa, J., Cikhardt, J., Klir, D. & Nassisi, V. (2014). Basic features of electromagnetic pulse generated in a laser-target chamber at 3-TW laser facility PALS. J. Phys. Conf. Ser. 508, 012007, 1–4.Google Scholar
De Marco, M., Krása, J., Cikhardt, J., Pfeifer, M., Krouský, E., Margarone, D., Ahmed, H., Borghesi, M., Kar, S., Giuffrida, L., Vrana, R., Velyhan, A., Limpouch, J., Korn, G., Weber, S., Velardi, L., Delle Side, D., Nassisi, V. & Ullschmied, J. (2016). Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets. J. Instrum. 11, C06004, 1–8.Google Scholar
De Marco, M., Krása, J., Cikhardt, J., Velyhan, A., Pfeifer, M., Dudžák, R., Dostál, J., Krouský, E., Limpouch, J., Pisarczyk, T., Kalinowska, Z., Chodukowski, T., Ullschmied, J., Giuffrida, L., Chatain, D., Perin, J.-P. & Margarone, D. (2017). Electromagnetic pulse (EMP) radiation by laser interaction with a solid H2 ribbon. Phys. Plasma 24, 083103, 1–6.Google Scholar
Dubois, J.-L. (2017). Private information.Google Scholar
Dubois, J.-L., Lubrano-Lavaderci, F., Raffestin, D., Ribolzi, J., Gazave, J., Compant La Fontaine, A., D'Humiè, E., Hulin, S., Nicolaï, P., Poyé, A. & Tikhonchuk, V.T. (2014). Target charging in short-pulse-laser–plasma experiments. Phys. Rev. E89, 013102, 1–15.Google Scholar
Eder, D.C., Throop, A., Brown, C.G. Jr., Kimbrough, J., Stowell, M.L., White, D.A., Song, P., Back, N., MacPhee, A., Chen, H., DeHope, W., Ping, Y., Maddox, B., Lister, J., Pratt, G., Ma, T., Tsui, Y., Perkins, M., O'Brien, D. & Patel, P. (2009). Mitigation of Electromagnetic Pulse (EMP) Effects from Short-Pulse Lasers and Fusion Neutrons. Lawrence Livermore National Laboratory Technical Report LLNL-TR-411183, pp. 135.CrossRefGoogle Scholar
Eder, D.C., Anderson, R.W., Bailey, D.S., Bell, P., Benson, D.J., Bertozzi, A.L., Bittle, W., Bradley, D., Brown, C.G., Clancy, T.J., Chen, H., Chevalier, J.M., Combis, P., Dauffy, L., Debonnel, C.S., Eckart, M.J., Fisher, A.C., Geille, A., Glebov, V.Y., Holder, J., Jadaud, J.P., Jones, O., Kaiser, T.B., Kalantar, D., Khater, H., Kimbrough, J., Koniges, A.E., Landen, O.L., MacGowan, B.J., Masters, N.D., MacPhee, A., Maddox, B.R., Meyers, M., Osher, S., Prasad, R., Faffestin, D., Raimbourg, J., Rekow, V., Sangster, C., Song, P., Stoeckl, C., Stowell, M.L., Teran, J.M., Throop, A., Tommasini, R., Vierne, J., White, D. & Whitman, P. (2010). Assessment and mitigation of radiation, EMP, Debris & Shrapnel impacts at megajoule-class laser facilities. J. Phys. Conf. Ser. 244, 032018, 1–4.Google Scholar
Felber, F.S. (2005). Dipole radio-frequency power from laser plasmas with no dipole moment. Appl. Phys. Lett. 86, 231501, 1–3.Google Scholar
Jackson, J. (1999). Classical Electrodynamics, 3rd edn. New York: John Wiley & Sons.Google Scholar
Krása, J., Delle Side, D., Giuffreda, E. & Nassisi, V. (2015). Characteristics of target polarization by laser ablation. Laser Part. Beams 33, 601604.Google Scholar
Krása, J., De Marco, M., Cikhardt, J., Pfeifer, M., Velyhan, A., Klír, D., Řezáč, K., Limpouch, J., Krouský, E., Dostál, J., Ullschmied, J. & Dudžák, R. (2017 a). Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation. Plasma Phys. Control. Fusion 59, 065007, 1–8.Google Scholar
Krása, J., Giuffreda, E., Delle Side, D., Nassisi, V., Klír, D., Cikhardt, J. & Řezáč, K. (2017 b). Target current: a useful parameter for characterizing laser ablation. Laser Part. Beams 35, 170176.Google Scholar
Mead, M.J., Neely, D., Gauoin, J., Heathcote, R. & Patel, P. (2004). Electromagnetic pulse generation within a petawatt laser target chamber. Rev. Sci. Instrum. 75, 42254227.Google Scholar
Miragliotta, J.A., Brawley, B., Sailor, C., Spicer, J.B. & Spicer, J.W.M. (2011). Detection of microwave emission from solid targets ablated with an ultrashort pulsed laser. Proc. SPIE 8037, 80370N, 1–8.CrossRefGoogle Scholar
Pearlman, J.S. & Dahlbacka, G.H. (1977). Charge separation and target voltages in laser-produced plasmas. Appl. Phys. Lett. 31, 414417.Google Scholar
Pearlman, J.S. & Dahlbacka, G.H. (1978). Emission of rf radiation from laser-produced plasma. J. Appl. Phys. 49, 457459.Google Scholar
Poyé, A., Hulin, S., Bailly-Grandvaux, M., Dubois, J.-L., Ribolzi, J., Raffestin, D., Bardon, M., Lubrano-Lavaderci, F., D'Humières, E., Santos, J.J., Nicolaï, Ph. & Tikhonchuk, V. (2015 a). Physics of giant electromagnetic pulse generation in short-pulse laser experiments. Phys. Rev. E 91, 043106, 1–6.Google Scholar
Poyé, A., Dubois, J.-L., Lubrano-Lavaderci, F., D'Humières, E., Bardon, M., Hulin, S., Bailly-Grandvaux, M., Ribolzi, J., Raffestin, D., Santos, J.J., Nicolaï, Ph. & Tikhonchuk, V. (2015 b). Dynamic model of target charging by short laser pulse interactions. Phys. Rev. E 92, 043107, 1–17.Google Scholar
Price, C.J., Donnelly, T.D., Giltrap, S., Stuart, N.H., Parker, S., Patankar, S., Lowe, H.F., Drew, D., Gumbrell, E.T. & Smith, R.A. (2015). An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets. Rev. Sci. Instrum. 86, 033502, 18.Google Scholar
Quinn, K., Wilson, P.A., Ramakrishna, B., Sarri, G., Romagnani, L., Pipahl, A., Willi, O., Lancia, L., Fuchs, J., Carroll, D.C., Quinn, M.N., Gallegos, P., Yuan, X.H., McKenna, P., Clarke, R.J., Neely, D., Motley, M., Macchi, A. & Borghesi, M. (2009). Observation of the transient charging of a laser-irradiated solid. Eur. Phys. J. D 55, 293297.Google Scholar
Raimbourg, J. (2004). Electromagnetic compatibility management for fast diagnostic design. Rev. Sci. Instrum. 75, 42344236.Google Scholar
Remo, J.L., Adams, R.G. & Jones, M.C. (2007). Atmospheric electromagnetic pulse propagation effects from thick targets in a terawatt laser target chamber. Appl. Opt. 46, 61666175.Google Scholar
Robinson, T.S., Consoli, F., Giltrap, S., Eardley, S.J., Hicks, G.S., Ditter, E.J., Ettlinger, O., Stuart, N.H., Notlley, M., De Angelis, R., Najmudin, Z. & Smith, R.A. (2017). Low-noise time-resolved optical sensing of electromagnetic pulses from petawatt laser-matter interactions. Sci. Rep. 7, 983, 1–12.Google Scholar
Stoeckl, C., Glebov, V., Jaanimagi, P.A., Knauer, J.P., Meyerhofer, D.D., Sangster, T.C., Storm, M., Sublett, S., Theobald, W., Key, M.H., MacKinnon, A.J., Patel, P., Neely, D. & Norreys, P.A. (2006). Operation of target diagnostics in a petawatt laser environment. Rev. Sci. Instrum. 77, 10F506.CrossRefGoogle Scholar
Varma, S., Spicer, J., Brawley, B. & Miragliotta, J. (2014). Plasma enhancement of femtosecond laser-induced electromagnetic pulses at metal and dielectric surfaces. Opt. Eng. 53, 051515, 1–5.Google Scholar
Yi, T., Yang, J., Yang, M., Wang, C., Yang, W., Li, T., Liu, S., Jiang, S., Ding, Y. & Xiao, S. (2016). Investigation into the electromagnetic impulses from long-pulse laser illuminating solid targets inside a laser facility. Photonic Sens. 6, 249255.Google Scholar