Hostname: page-component-797576ffbb-58z7q Total loading time: 0 Render date: 2023-12-03T19:46:17.177Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Simulations of shock generation and propagation in laser-plasmas

Published online by Cambridge University Press:  16 June 2008

I.G. Lebo
Affiliation:
Technical University–MIREA, Moscow, Russia
A.I. Lebo
Affiliation:
Lomonosov Moscow State University, Moscow, Russia
D. Batani*
Affiliation:
Dipartimento di Fisica “G. Occhialini,”Università di Milano Bicocca, Milano, Italy
R. Dezulian
Affiliation:
Dipartimento di Fisica “G. Occhialini,”Università di Milano Bicocca, Milano, Italy
R. Benocci
Affiliation:
Dipartimento di Fisica “G. Occhialini,”Università di Milano Bicocca, Milano, Italy
R. Jafer
Affiliation:
Dipartimento di Fisica “G. Occhialini,”Università di Milano Bicocca, Milano, Italy
E. Krousky
Affiliation:
PALS Research Centre, Prague, Czech Republic
*
Address correspondence and reprint requests to: D. Batani, Dipartimento di Fisica “G. Occhialini,”Università di Milano Bicocca, Piazza della Scienza 3, 20126 Milano, Italy. E-mail: batani@mib.infn.it

Abstract

We analyze the results of a recent experiment performed at the PALS laboratory and concerning ablation pressure at 0.44 µm laser wavelength measured at irradiance up to 2 × 1014 W/cm2. Using the code “ATLANT,” we have performed two-dimensional (2D) hydrodynamics simulations. Results show that 2D effects did not affect the experiment and also give evidence of the phenomenon of delocalized absorption of laser light.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanas'ev, Yu., Gamaly, V., Rozanov, E.G., Trudi, V.B. (1982). The basic equations of dynamics and kinetics of laser plasma. Trudi FIAN 134, pp. 3241, Moscow, Nauka (in Russian).Google Scholar
Bashir, S., Rafique, M.S. & Ul-Haq, F. (2007). Laser ablation of ion irradiated CR-39. Laser Part. Beams 25, 181191.Google Scholar
Batani, D., Bossi, S., Benuzzi, A., Koenig, M., Faral, B., Boudenne, J.M., Grandjouan, N., Temporal, M. & Atzeni, S. (1996). Optical smoothing for shock wave generation: Application to the measurement of Equation of State. Laser Part. Beams 14, 211233.Google Scholar
Batani, D., Benuzzi, A., Koenig, M., Krasyuk, I., Pashinin, P., Semenov, A., Lomonosov, I., Fortov, V. (1999). Problems of measurement of dense plasma heating in laser shock wave compression. Laser Part. Beams 17, 265274.Google Scholar
Batani, D., Balducci, A., Nazarov, W., Löwer, Th., Koenig, M., Faral, B., Benuzzi, A. & Temporal, M. (2001). Use of low density foams as pressure amplifiers in EOS experiments with laser driven shock waves. Phys. Rev. E, 63, 46410.Google Scholar
Batani, D.Bleu, C. & Lower, Th. (2002). Modelistic, simulation and application of phase plates. Euro. Phys. J D 19, 231.Google Scholar
Batani, D, Stabile, H., Ravasio, A., Desai, T., Lucchini, G., Ullschmied, J., Krousky, E., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Prag, A., Nishimura, H., Ochi, Y., Zvorykin, V. (2003). Shock pressure induced by 0.44 µm laser radiation on aluminum. Laser Part. Beams 21, 479485.Google Scholar
Batani, D., Stabile, H., Ravasio, A., Desai, T., Lucchini, G., Desai, T., Ullschmied, J., Krousky, E., Juha, L., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Nishimura, H., Ochi, Y. (2003). Ablation pressure scaling at short laser wavelength. Phys. Rev. E 68, 067403.Google Scholar
Batani, D., Löwer, Th., Hall, T., Benuzzi, A. & Koenig, M. (2003). Production of high quality shocks for Equation of State Experiments. Euro. Phys. J. D 23, 99.Google Scholar
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.Google Scholar
Bussoli, M., Batani, D., Desai, T., Canova, F., Milani, M., Trtica, M., Gakovic, B. & Krousky, E. (2007). Study of laser induced ablation with focused ion beam/scanning electron microscope devices. Laser Particle Beams 25, 121125.Google Scholar
Caruso, A. & Gratton, R., (1968). Some properties of the plasmas produced by irradiating light solids by laser pulses. Plasma Phys 10, 867.Google Scholar
Fang, X. & Ahmad, S.R. (2007). Saturation effect at high laser pulse energies in laser-induced breakdown spectroscopy for elemental analysis in water. Laser Part. Beams 25, 613620.Google Scholar
Fortov, V.E., Kilpio, A.V., Krasyuk, I.K., Batani, D., Lomonosov, I.V., Pashinin, P.P., Shashkov, E.V., Semenov, A.Yu. & Vovchenko, V.I. (2002). The spall strength limit of matter at ultrahigh strain rates induced by laser shock wave. Laser Part. Beams 20, 317320.Google Scholar
Gus'kov, S.Yu., Rozanov, V.B. & Zverev, V.V. (1983). The spherical target stationary corona with allowance for fast electron transport. Kvantovaja electronika 10, 802 (in Russian).Google Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.Google Scholar
Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Prag, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P., Ullschmied, J. (2001). The Prague Asterix Laser System. Phys. Plasmas 8, 24952501.Google Scholar
Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M., Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett 53, 10571060.Google Scholar
Key, M.H., et al. (1979). Study of ablatively imploded spherical shells. Phys. Rev. Lett 45, 1801.Google Scholar
Key, M.H., Toner, W.T., Goldsack, T.J., Kilkenny, J.D., Veats, S.A., Cunningham, P.F., Lewis, C.L.S. (1983). A study of ablation by laser irradiation of plane targets at wavelengths 1.05, 0.53, and 0.35 µm. Phys. Fluids 23, 20112026.Google Scholar
Koenig, M., Fabre, E., Malka, V., Michard, A., Hammerling, P., Batani, D., Boudenne, J.M., Garconnet, J.P. & Fews, P. (1992). Recent results on implosions directly driven at λ = 0.26µm laser wavelength. Laser Part. Beams 10, 573583.Google Scholar
Koenig, M., Faral, B., Boudenne, J.M., Batani, D., Bossi, S. & Benuzzi, A. (1994). Use of optical smoothing techniques for shock wave generation in laser produced plasmas. Phys. Rev. E 50, R3314R3317.Google Scholar
Limpouch, J., Lebo, I.G. & Rozanov, V.B. (1987). Soviet Physics-Lebedev Institute Reports (Kratkie Soobshcheniya po Fizike: Sbornik AN SSSR, Fizicheskii Institut im P.N. Lebedeva). New York: Allerton Press Inc.Google Scholar
Lebo, I.G., Popov, I.V., Tishkin, V.F. & Rozanov, V.B. (1994). Two-dimensional modeling of laser-target heating and compression. J. Russian Laser Res. 15, 136143.Google Scholar
Lebo, I.G., Demchenko, N.N., Iskakov, A.B., Limpouch, J., Rozanov, V.B & Tishkin, V.F. (2004). Simulation of high-intensity laser-plasma interactions by use of the 2D Lagrangian code “ATLANT-HE.” Laser Part. Beams 22, 267273.Google Scholar
Lebo, I.G. & Tishkin, V.F. (2006). Issledovanie gidrodinamicheskoy neustojchivosti v zadachah LTF. Monography, Moscow, FIZMATLIT.Google Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.Google Scholar
Meyer, B. & Thiell, G. (1984). Experimental scaling laws for ablation parameters in plane target–laser interaction with 1.06 µm and 0.35 µm laser wavelengths. Phys. Fluids 27, 302.Google Scholar
Mora, P. (1982). Theoretical model of absorption of laser light by a plasma. Phys. Fluids 25, 1051.Google Scholar
More, R.M., et al. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 3059.Google Scholar
Stevenson, R.M., et al. (1994). Binary-phase zone plate arrays for the generation of uniform focal profiles. Opt. Lett. 19, 363.Google Scholar
Thareja, R.K. & Sharma, A.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams 24, 311320.Google Scholar
T4 Group LANL (1983). SESAME report on the Los Alamos Equation-of-State library. Report No. LALP-83-4. Los Alamos National Laboratory: New Mexico.Google Scholar
Veiko, V.P., Shakhno, E.A., Smirnov, V.N., Miaskovski, A.M. & Nikishin, G.D. (2006). Laser-induced film deposition by LIFT: Physical mechanisms and applications. Laser Part. Beams 24, 203209.Google Scholar
Wang, Y.L., Xu, W., Zhou, Y., Chu, L.Z. & Fu, G.S. (2007). Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablation. Laser Part. Beams 25, 913.Google Scholar
Zel'dovich, Y.B. & Raizer, Y.P. (1967). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press.Google Scholar