Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-lmg95 Total loading time: 0.223 Render date: 2021-10-19T13:11:39.581Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Simulations of femtosecond laser pulse interaction with spray target

Published online by Cambridge University Press:  28 January 2014

J. Psikal*
Affiliation:
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Praha, Czech Republic
O. Klimo
Affiliation:
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Praha, Czech Republic
J. Limpouch
Affiliation:
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Praha, Czech Republic
*
Address correspondence and reprint requests to: Jan Psikal, Faculty of Nuclear Sciences and Physical Engineering CTU, Brehova 7, 115 19 Praha 1, Czech Republic. E-mail: jan.psikal@fjfi.cvut.cz

Abstract

Laser interactions with spray targets (clouds of submicron droplets) are studied here via numerical simulations using two-dimensional particle-in-cell codes. Our simulations demonstrate an efficient absorption of laser pulse energy inside the spray. The energy absorption efficiency depends on the inter-droplet distance, size of the cloud of droplets, and laser pulse intensity, as well as on the pre-evaporation of droplets due to laser pulse pedestal. We investigate in detail proton acceleration from the spray. Energy spectra of protons in various acceleration directions vary significantly depending on the density profile of the plasma created from the droplets and on laser intensity. The spray target can be alternative of foil targets for high intensity high repetition ultrahigh contrast femtosecond lasers. However, at intensities >1021 W/cm2, the efficiency of laser absorption and ion acceleration from the droplets drops significantly in contrast to foils.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brantov, A.V., Tikhonchuk, V.T., Klimo, O., Romanov, D.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T. & Nickles, P.V. (2006). Quasi-mono-energetic ion acceleration from a homogeneous composite target by an intense laser pulse. Phys. Plasmas 13, 122705.CrossRefGoogle Scholar
Breizman, B.N., Arefiev, A.V. & Fomytskyi, M.V. (2005). Nonlinear physics of laser-irradiated microclusters. Phys. Plasmas 12, 056706.Google Scholar
Di Piazza, A., Muller, C., Hatsagortsyan, K.Z. & Keitel, C.H. (2012). Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 11771228.CrossRefGoogle Scholar
Gibbon, P. & Forster, E. (1996). Short-pulse laser-plasma interactions. Plasma Phys. Control. Fus. 38, 769793.CrossRefGoogle Scholar
Kemp, A.J. & Ruhl, H. (2005). Multispecies ion acceleration off laser-irradiated water droplets. Phys. Plasmas 12, 033105.CrossRefGoogle Scholar
Klimo, O. (2010). PIC Simulations of Ultrashort-Pulse Laser Solid-Target Interactions: The Role of Collisions and Ionization. Saarbrucken, Germany: Lambert Academic Publishing.Google Scholar
Levy, A., Ceccotti, T., D'oliveira, , Reau, F., Perdrix, M., Quere, F., Monot, P., Bougeard, M., Lagadec, H., Martin, P., Geindre, J.P. & Audebert, P. (2007). Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses. Opt. Lett. 32, 310312.CrossRefGoogle Scholar
Liseykina, T.V. & Bauer, D. (2013). Plasma-formation dynamics in intense laser-droplet interaction. Phys. Rev. Lett. 110, 145003.CrossRefGoogle ScholarPubMed
Lotz, W. (1967) An empirical formula for the electron-impact ionization cross-section. Z. Physik 206, 205211.CrossRefGoogle Scholar
Macchi, A., Borghesi, M. & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751793.CrossRefGoogle Scholar
Malka, V. (2012). Laser plasma accelerators. Phys. Plasmas 19, 055501.CrossRefGoogle Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Morita, T., Esirkepov, T.Z., Koga, J., Yamagiwa, M. & Bulanov, S.V. (2009). The effect of laser pulse incidence angle on the proton acceleration from a double-layer target. Plasma Phys. Contr. Fus. 51, 024002.CrossRefGoogle Scholar
Mourou, G. & Tajima, T. (2011). More intense, shorter pulses. Sci. 331, 4142.CrossRefGoogle ScholarPubMed
Murakami, M. & Basko, M.M. (2006). Self-similar expansion of finite-size non-quasi-neutral plasmas into vacuum: Relation to the problem of ion acceleration. Phys. Plasmas 13, 012105.CrossRefGoogle Scholar
Nakamura, T., Koga, J.K., Esirkepov, T.Z., Kando, M., Korn, G. & Bulanov, S.V. (2012). High-power gamma-ray flash generation in ultraintense laser-plasma interactions. Phys. Rev. Lett. 108, 195001.CrossRefGoogle ScholarPubMed
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Pfund, R.E.W., Lichters, R. & Meyer-Ter-Vehn, J. (1998). LPIC ++ a parallel one-dimensional relativistic electromagnetic particle-in-cell code for simulating laser-plasma-interaction. AIP Conf. Proc. 426, 141146.CrossRefGoogle Scholar
Psikal, J., Limpouch, J., Kawata, S. & Andreev, A.A. (2006). PIC simulations of femtosecond interactions with mass-limited targets. Czech. J. Phys. 56, B515B521.CrossRefGoogle Scholar
Psikal, J., Tikhonchuk, V.T., Limpouch, J., Andreev, A.A. & Brantov, A.V. (2008). Ion acceleration by femtosecond laser pulses in small multispecies targets. Phys. Plasmas 15, 053102.CrossRefGoogle Scholar
Psikal, J., Tikhonchuk, V.T., Limpouch, J. & Klimo, O. (2010). Lateral hot electron transport and ion acceleration in femtosecond laser pulse interaction with thin foils. Phys. Plasmas 17, 013102.CrossRefGoogle Scholar
Psikal, J., Klimo, O. & Limpouch, J. (2011). Field ionization effects on ion acceleration in laser-irradiated clusters. Nucl. Instrum. Meth. Phys. Res. A 653, 109112.CrossRefGoogle Scholar
Psikal, J., Klimo, O. & Limpouch, J. (2012). 2D particle-in-cell simulations of ion acceleration in laser irradiated submicron clusters including field ionization. Phys. Plasmas 19, 043107.CrossRefGoogle Scholar
Pukhov, A. (2003). Strong field interaction of laser radiation. Rep. Prog. Phys. 66, 47101.CrossRefGoogle Scholar
Ramakrishna, B., Murakami, M., Borghesi, M., Ehrentraut, L., Nickles, P.V., Schnuerer, M., Steinke, S., Psikal, J., Tikhonchuk, V. & Ter-Avetisyan, S. (2010). Laser-driven quasimonoenergetic proton burst from water spray target. Phys. Plasmas 17, 083113.CrossRefGoogle Scholar
Ridgers, C.P., Brady, C.S., Duclous, R., Kirk, J.G., Bennett, K., Arber, T.D., Robinson, A.P.L. & Bell, A.R. (2012). Dense electron-positron plasmas and ultraintense gamma rays from laser-irradiated solids. Phys. Rev. Lett. 108, 165006.CrossRefGoogle ScholarPubMed
Ter-Avetisyan, S., Schnuerer, M., Stiel, H. & Nickles, P.V. (2003). A high-density sub-micron liquid spray for laser driven radiation sources. J. Phys. D: Appl. Phys. 36, 24212426.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnuerer, M., Nickles, P.V., Smirnov, M.B., Sandner, W., Andreev, A., Platonov, K., Psikal, J. & Tikhonchuk, V. (2008). Laser proton acceleration in a water spray target. Phys. Plasmas 15, 083106.CrossRefGoogle Scholar
Ter-Avetisyan, S., Ramakrishna, B., Borghesi, M., Doria, D., Zepf, M., Sarri, G., Ehrentraut, L., Andreev, A., Nickles, P.V., Steinke, S., Sandner, W., Schnuerer, M. & Tikhonchuk, V. (2011). MeV negative ion generation from ultra-intense laser interaction with a water spray. Appl. Phys. Lett. 99, 051501.CrossRefGoogle Scholar
Ter-Avetisyan, S., Ramakrishna, B., Prasad, R., Borghesi, M., Nickles, P.V., Steinke, S., Schnuerer, M., Popov, K.I., Ramunno, L., Zmitrenko, N.V. & Bychenkov, V.Y. (2012). Generation of a quasi-monoergetic proton beam from laser-irradiated sub-micron droplets. Phys. Plasmas 19, 073112.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Simulations of femtosecond laser pulse interaction with spray target
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Simulations of femtosecond laser pulse interaction with spray target
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Simulations of femtosecond laser pulse interaction with spray target
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *