Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-95llv Total loading time: 0.196 Render date: 2021-05-11T08:36:21.171Z Has data issue: true Feature Flags: {}

Simulation analysis of zinc ablation process and mass by intense pulsed ion beam irradiation

Published online by Cambridge University Press:  21 June 2017

J. Zhang
Affiliation:
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, People's Republic of China Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, People's Republic of China
H.W. Zhong
Affiliation:
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, People's Republic of China Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, People's Republic of China
X. Yu
Affiliation:
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, People's Republic of China Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, People's Republic of China School of Space and Environment, Beihang University, Beijing 100191, People's Republic of China
J. Shen
Affiliation:
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, People's Republic of China Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, People's Republic of China
G.Y. Liang
Affiliation:
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, People's Republic of China Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, People's Republic of China
X.J. Cui
Affiliation:
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, People's Republic of China Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, People's Republic of China
X.F. Zhang
Affiliation:
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, People's Republic of China Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, People's Republic of China
G.L. Zhang
Affiliation:
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, People's Republic of China Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, People's Republic of China
S. Yan
Affiliation:
Institute of Heavy Ion Physics, Peking University, Beijing 100871, People's Republic of China
X.Y. Le
Affiliation:
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, People's Republic of China Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, People's Republic of China
Corresponding
E-mail address:

Abstract

As the strong thermal effect in the surface, intense pulsed ion beam (IPIB) has been extensively used in material surface modification. The ablation is an important part in the interaction process between IPIB and material. In order to investigate the ablation mechanism, combined with IPIB dynamic energy spectrum and infrared imaging diagnostic results, a two-dimensional axisymmetric heat conduction model considering the effect of ablated material was constructed to describe the ablation process and calculate the lost mass of the targets. The influences of beam parameters and ablated matter on the ablation rate were discussed. The experimental and simulative results of ablation threshold and mass were compared.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Davis, H.A., Bartsch, R.R., Olson, J.C., Rej, D.J. & Waganaar, W.J. (1997). Intense ion beam optimization and characterization with infrared imaging. J. Appl. Phys. 82, 32233231.CrossRefGoogle Scholar
Isakova, Y.I. (2011). Infrared imaging diagnostics for parameters of powerful ion beams formed by a diode in a double-pulse mode. IEEE Pulsed Power Conf. pp. 334–340.CrossRefGoogle Scholar
Isakova, Y.I. & Pushkarev, A.I. (2013). Thermal imaging diagnostics of powerful ion beams. Instrum. Exp. Tech. 56, 185192.CrossRefGoogle Scholar
Jiang, W., Hashimoto, N., Shinkai, H., Ohtomo, K. & Yatsui, K. (1998). Characteristics of ablation plasma produced by pulsed light ion beam interaction with targets and applications to materials science. Nucl. Instrum. Methods Phys. Res. Sect. A 415, 533538.CrossRefGoogle Scholar
Li, L., Xiang, X., Lei, Y., Liao, W., Yuan, X., He, S., Jiang, X., Zheng, W. & Zu, X. (2013). A new method to investigate the intense pulsed ion beam ablation of silica. Nucl. Instrum. Methods Phys. Res. Sect. B 312, 131136.CrossRefGoogle Scholar
Pushkarev, A.I. & Isakova, Y.I. (2013). A gigawatt power pulsed ion beam generator for industrial applications. Surf. Coatings Technol. 228, 382384.CrossRefGoogle Scholar
Pushkarev, A.I., Isakova, Y.I. & Khailov, I.P. (2015). Intense ion beam generation in a diode with explosive emission cathode in self-magnetically insulated mode. Eur. Phys. J. D 69, 40.CrossRefGoogle Scholar
Rej, D.J., Davis, H.A., Olson, J.C., Remnev, G.E., Zakoutaev, A.N., Ryzhkov, V.A., Struts, V.K., Isakov, I.F., Shulov, V.A., Nochevnaya, N.A., Stinnett, R.W., Neau, E.L., Yatsui, K. & Jiang, W. (1997). Materials processing with intense pulsed ion beams. J. Vac. Sci. Technol. A 15, 10891097.CrossRefGoogle Scholar
Renk, T.J., Provencio, P.P., Prasad, S.V., Shlapakovski, A.S., Petrov, A.V., Yatsui, K., Jiang, W. & Suematsu, H. (2004). Materials modification using intense ion beams. Proc. IEEE 92, 10571080.CrossRefGoogle Scholar
Wu, D., Lei, M., Zhu, X. & Gong, Y. (2011). Numerical study on the ablation effects of tungsten irradiated by high-intensity pulsed ion beam. Phys. Proc. 22, 246251.CrossRefGoogle Scholar
Yu, X., Shen, J., Ivanovna, Y., Zhong, H.W., Zhang, J., Yan, S., Zhang, G.L., Zhang, X.F. & Le, X.Y. (2015 a). Study of energy deposition of intense pulsed ion beam in metal target. Vacuum 122, 1216.CrossRefGoogle Scholar
Yu, X., Shen, J., Qu, M., Liu, W., Zhong, H.W., Zhang, J., Zhang, Y.Y., Yan, S., Zhang, G.L., Zhang, X.F. & Le, X.Y. (2015 b). Characterization and analysis of infrared imaging diagnostics for intense pulsed ion and electron beams. Vacuum 113, 3642.CrossRefGoogle Scholar
Ziegler, J.F., Ziegler, M.D. & Biersack, J.P. (2010). SRIM – the stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B 268, 18181823.CrossRefGoogle Scholar
Zhang, J., Yu, X., Zhong, H.W., Wei, B.B., Qu, M., Shen, J., Zhang, Y.Y., Yan, S., Zhang, G.L., Zhang, X.F. & Le, X.Y. (2015). The ablation mass of metals by intense pulsed ion beam irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 365, 210213.CrossRefGoogle Scholar
Zhang, J., Zhong, H.W., Ye, Z.A., Shen, J., Liang, G.Y., Cui, X.J., Yu, X., Zhang, X.F., Zhang, G.L., Yan, S., Remnev, G.E. & Le, X.Y. (2017). Study on ablation products of zinc by intense pulsed ion beam irradiation. Laser Part. Beams 35, 16.Google Scholar
Zhao, W.J., Remnev, G.E., Yan, S., Opekounov, M.S., Le, X.Y., Matvienko, V.M., Han, B.X., Xue, J.M. & Wang, Y.G. (2000). Intense pulsed ion beam sources for industrial applications. Rev. Sci. Instrum. 71, 10451048.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Simulation analysis of zinc ablation process and mass by intense pulsed ion beam irradiation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Simulation analysis of zinc ablation process and mass by intense pulsed ion beam irradiation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Simulation analysis of zinc ablation process and mass by intense pulsed ion beam irradiation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *