Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-10-03T10:35:49.940Z Has data issue: false hasContentIssue false

Self-focusing up to the incident laser wavelength by an appropriate density ramp

Published online by Cambridge University Press:  15 December 2011

R. Sadighi-Bonabi*
Affiliation:
Department of Physics, Sharif University of Technology, Tehran, Iran
M. Moshkelgosha
Affiliation:
Department of Physics, Sharif University of Technology, Tehran, Iran
*
Address correspondence and reprint requests to: R. Sadighi-Bonabi, Department of Physics, Sharif University of Technology, 11365-9161, Tehran, Iran. E-mail: sadighi@sharif.ir

Abstract

This work is devoted to improving relativistic self-focusing of intense laser beam in underdense unmagnetized plasma. New density profiles are introduced to achieve beam width parameter up to the wavelength of the propagating laser. By investigating variations of the beam width parameter in presence of different density profiles it is found that the beam width parameter is considerably decreased for the introduced density ramp comparing with uniform density and earlier introduced density ramp profiles. By using this new density profile high intensity laser pulses are guided over several Rayleigh lengths with extremely small beam width parameter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Askarian, G.A. (1962). Effect of the gradient of a strong electromagnetic ray on electrons and atoms. Sov. Phys. JETP 15, 10881090.Google Scholar
Boyd, R.W., Lukishova, S.G. & Shen, Y.R. (2008). Self-focusing: Past and Present. Fundamentals and Prospects. (Topics in Applied Physics). New York: Springer.Google Scholar
Brandi, H.S., Manus, C., Mainfray, G. & Lehner, T. (1993). Relativistic self-focusing of ultraintense laser pulses in inhomogeneous underdense plasmas. Phys. Rev. E 47, 37803783.CrossRefGoogle ScholarPubMed
Butylkin, V S. & Fedorova, M B. (1994). Third harmonic generation in gases under self-focusing and self-defocusing conditions. Quan. Electron. 24, 148153.Google Scholar
Fature, J., Gline, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E.Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nat. 431, 541544.Google Scholar
Geddes, C.G.R. (2005). Plasma Channel Guided Laser Wakefield Accelerator. Ph.D. dissertation, Berkeley: University of California.Google Scholar
Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G.H. & He, X.T. (2008). Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration. Laser Part. Beams 26, 5111.Google Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Y. & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, 1525.Google Scholar
Gupta, D.N. & Suk, H. (2007 b). Additional focusing of a high-intensity laser beam in a plasma with a density ramp and a magnetic field. Appl. Phys. Lett. 91, 081505/13.Google Scholar
Gupta, D.N., Hur, Min S., Hwang, Ilmoon, Suk, Hyyong. (2007 a). Plasma density ramp for relativistic self-focusing of an intense laser. J. Opt. Soc. Am. B. 24, 11551159.Google Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernandez, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nat. 439, 441444.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, P., Roth, M., Tahir, N.A., Tauschwitz, A., Udera, S., Vanentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intensive heavy ion and laser beams. Laser Part. Beams 23, 4754.Google Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas, J. Opt. Soc. 65, 882886.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Hora, H., Miley, G. H., Azizi, N., Malkynia, B., Ghoranneviss, M. & He, X. (2009). Nonlinear force driven plasma blocks igniting solid density hydrogen boron: Laser fusion energy without radioactivity. Laser Part. Beams 27, 491496.Google Scholar
Kaur, S, & Sharma, A.K. (2009). Self focusing of a laser pulse in plasma with periodic density ripple. Laser Part. Beams 27, 193199.Google Scholar
Lalousis, P. & Hora, H. (1983). First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser Part. Beams 1, 283304.Google Scholar
Láska, L., Jungwirth, K., Krása, J., Krouský, E., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L. & Boody, F.P. (2006). Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser Part. Beams 24, 175179.Google Scholar
Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth, Cs., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B., Hooker, S.M. (2006). GeV electron beams from a centimeter-scale accelerator, Nat. 2, 696699.Google Scholar
Cao, Lihua, Yu, Wei, Xu, Han, Zheng, Chunyang, Liu, Zhanjun & Li, Bin. (2004). Electron acceleration by the short pulse laser in inhomogeneous underdense plasmas. J. Plasma Phys. 70, 625634.Google Scholar
Mori, W.B., Joshi, C., Dawson, J.M. & Forslund, D.W. (1988). Evolution of self-focusing of intense electromagnetic waves in plasma. Phys. Rev. Lett. 60, 12981301.CrossRefGoogle ScholarPubMed
Osman, F., Castillo, R. & Hora, H. (2000). Numerical programming of self-focusing at laser—Plasma interaction. Laser Part. Beams 18, 5972.Google Scholar
Perkins, F.W. & Valeo, E.J. (1974). Thermal self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 32, 12341237.Google Scholar
Sadighi, S.K. & Sadighi-Bonabi, R. (2010). The evaluation of transmutation of hazardous nuclear waste of 90Sr, into valuable nuclear medicine of 89Sr by ultraintense lasers. Laser Part. Beams 28, 269276.Google Scholar
Sadighi-Bonabi, R. & Kokabi, O. (2006). Evaluation of Transmutation of 137Cs(γ, n) 136Cs using ultra intense lasers. Ch. Phys. Lett. 6, 14341436.Google Scholar
Sadighi-Bonabi, R. & Rahmatollahpur, S.H. (2010 b). A complete accounting of the monoenergetic electron parameters in an ellipsoidal bubble model. Phys. Plasmas 17, 033105/1–8.Google Scholar
Sadighi-Bonabi, R., Habibi, M. & Yazdani, E. (2010 g). Improving the relativistic self-focusing of intense laser beam in plasma using density transition. Phys. Plasmas 16, 083105.Google Scholar
Sadighi-Bonabi, R., Hora, H., Riazi, Z., Yazdani, E. & Sadighi, S.K. (2010 c). Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition. Laser Part. Beams 28, 101107.Google Scholar
Sadighi-Bonabi, R., Irani, E., Safaie, B., Imani, Kh., Silatani, M. & Zare, S. (2010 e). Possibility of ultra-intense laser transmutation of 93zr (γ, n) 92zr a long-lived nuclear waste into a stable isotope. Energy Convers. Manag. 51, 636639.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Navid, H.A. & Zobdeh, P. (2009 a). Observation of quasi mono-energetic electron bunches in the new ellipsoid cavity model. Laser Part. Beams 27, 223231.Google Scholar
Sadighi-Bonabi, R., Rahmatallahpor, S., Navid, H.A., Lotfi, E., Zobdeh, P., Reiazi, Z., Nik, M. B. & Mohamadian, M. (2009 b). Modification of the energy of mono-energetic electron beam by ellipsoid model for the cavity in the bubble regime. Contrib. Plasma Phys. 49, 4954.Google Scholar
Sadighi-Bonabi, R., Yazdani, E., Cang, Y. & Hora, H. (2010 d). Dielectric magnifying of plasma blocks by nonlinear force acceleration with delayed electron heating. Phys. Plasmas 17, 113108/15.Google Scholar
Sadighi-Bonabi, R., Yazdani, E., Habibi, M. & Lotfi, E. (2010 f). Comment on “plasma density ramp for relativistic self-focusing of an intense laser.” J. Opt. Soc. Am. B 27, 1731.Google Scholar
Sadighi-Bonabia, R. & Rahmatollahpur, S.H. (2010 a). Potential and energy of the monoenergetic electrons in an alternative ellipsoid bubble model. Phys. Rev. A 81, 023408/17.Google Scholar
Schlenvoigt, H.P., Haupt, K., Debus, A., Budde, F., Ja Ckel, O., Pfotenhauer, S., Schwoerer, H., Rohwer, E., Gallacher, J.G., Brunetti., E., Shanks, R.P., Wiggins, S.M. & Jaroszynski, D.A. (2008). Principles and applications of compact laser–plasma accelerators. Nat. 4, 130133.Google Scholar
Sharma, A. & Kourakis, A. (2010). Relativistic laser pulse compression in plasmas with a linear axial density gradient, Plasma Phys. Control. Fusion 52, 065002/113.Google Scholar
Singh, K.P., Sajal, V. & Gupta, D.N. (2008). Quasi-monoenergetic GeV electrons from the interaction of two laser pulses with a gas. Laser Part. Beam 26, 597604.Google Scholar
Sun, G., Ott, E., Lee, Yc. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526532.Google Scholar
Ting, A., Moore, C. I., Krushelnick, K., Manka, C., Esarey, E., Sprangle, P., Hubbard, R., Burris, H.R. & Baine, M. (1997). Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment. Phys. Plasmas 5, 18891899.Google Scholar
Tripathi, V.K., Taguchi, T. & Liu, C.S. (2005). Plasma channel charging by an intense short pulse laser and ion Coulomb explosion. Phys. Plasmas 12, 043106.Google Scholar
Upadhyay, A., Tripathi, V.K., Sharma, A.K. & Pant, H.C. (2002). Asymmetric self-focusing of a laser pulse in plasma. J. Plasma Phys. 68, 7580.Google Scholar
Varshney, Meenu, Qureshi, K.A. & Varshney, Dinesh. (2006). Relativistic self-focusing of a laser beam in an inhomogeneous plasma. J. Plasma Phys. 72, 195203.Google Scholar
Xie, B.S., Aimidula, A., Niu, J.S., Liu, J. & Yu, M.Y. (2009). Electron acceleration in the wakefield of asymmetric laser pulses. Laser Part. Beams 27, 2732.Google Scholar
Yazdani, E., Cang, Y., Sadighi-Bonabi, R., Hora, H. & Osman, F. (2009). Layers from initial Rayleigh density profile by directed nonlinear force driven plasma blocks for alternative fast ignition. Laser Part. Beams 27, 149155.Google Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Lang, W., Li, Z.H., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-ray emission from ultra intense-ultra short laser irradiation. Phys. Rev. E 57, 37463752.Google Scholar
Zhou, C.T., Yu, M. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.Google Scholar