Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-27T22:29:12.365Z Has data issue: false hasContentIssue false

The role of hollow atoms in the spectra of an ultrashort-pulse-laser-driven Ar cluster target

Published online by Cambridge University Press:  01 April 2008

J. Colgan*
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
J. Abdallah JR.
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
A. Y. Faenov
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency, Kizugawa-shi. Kyoto, Japan
T. A. Pikuz
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency, Kizugawa-shi. Kyoto, Japan
I. Y. Skobelev
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
V. E. Fortov
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Y. Fukuda
Affiliation:
Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency, Kizugawa-shi. Kyoto, Japan
Y. Akahane
Affiliation:
Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency, Kizugawa-shi. Kyoto, Japan
M. Aoyama
Affiliation:
Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency, Kizugawa-shi. Kyoto, Japan
N. Inoue
Affiliation:
Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency, Kizugawa-shi. Kyoto, Japan
K. Yamakawa
Affiliation:
Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency, Kizugawa-shi. Kyoto, Japan
*
Address correspondence and reprint requests to: J. Colgan, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545. E-mail: jcolgan@lanl.gov

Abstract

An investigation is made of the role of hollow atoms in the spectra of an ultrashort-pulse-laser-driven Ar cluster target. Experimental measurements are presented from an Ar cluster-gas target using short-pulse lasers with various intensities, durations, and contrasts. Calculations in support of these measurements have been performed using a detailed atomic kinetics model with the ion distributions found from solution of the time-dependent rate equations. The calculations are in good agreement with the measurements and the role of hollow atoms in the resulting complicated spectra is analyzed. It is demonstrated that, although the presence of hollow atoms is estimated to add only around 2% to the total line emission, signatures of hollow atom spectra can be identified in the calculations, which are qualitatively supported by the experimental measurements.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J., Batani, D., Desai, T., Lucchini, G., Faenov, A., Pikuz, T., Magunov, A. & Narayanan, V. (2007). High resolution X-ray emission spectra from picosecond laser irradiated Ge targets. Laser Part. Beams 25, 245.CrossRefGoogle Scholar
Abdallah, J., Clark, R.E.H. & Cowan, R.D. (1988): CATS: Cowan Atomic Structure Code. Los Alamos National Laboratory, Los Alamos Manual No. LA 11436-M-I.Google Scholar
Abdallah, J. Jr., Csanak, G., Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Yamakawa, K., Faenov, A.Ya., Magunov, A.I., Pikuz, T.A. & Skobelev, I.Y. (2003). Time-dependent Boltzmann kinetic model of X rays produced by ultrashort-pulse laser irradiation of argon clusters. Phys. Rev. A 68, 063201.CrossRefGoogle Scholar
Abdallah, J. Jr., Skobelev, I.Y., Faenov, A.Ya, Magunov, A.I., Pikuz, T.A, Flora, F., Bollanti, S., DI LAZZARO, P., Letardi, T., Burattini, E., Grilli, A., Reale, A., Palladino, L., Tomassetti, G., Scafati, A. & Reale, L. (2000). Spectra of multiply charged hollow ions in the plasma produced by a short-wavelength nanosecond laser. Quant. Electr. 30, 694.CrossRefGoogle Scholar
Aglitsky, Y., Lehecka, T., Deniz, A., Hardgrove, J., Seely, J., Brown, C., Feldman, U., Pawley, C., Gerber, K., Bodner, S., Obenschain, S., Lehmberg, R., Mclean, E., Pronko, M., Sethian, J., Stamper, J., Schmitt, A., Sullivan, C.A., Holland, G. & Laming, M. (1996). X-ray emission from plasmas created by smoothed KrF laser irradiation. Phys. Plasmas 3, 3438.CrossRefGoogle Scholar
Akahane, Y., Ma, J., Fukuda, Y., Aoyama, M., Kiriyama, H., Sheldakova, J.V., Kudryashov, A.V. & Yamakawa, K., (2006). Characterization of wave-front corrected 100 TW, 10 Hz laser pulses with peak intensities greater than 1020 W/cm2. Rev. Sci. Instrum. 77, 023102.CrossRefGoogle Scholar
Archer, B.J., Clark, R.E.H., Fontes, C.J., Zhang, H.L. (2002). GIPPER User Manual. Los Alamos Memorandum LA-UR-02–1526.Google Scholar
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T., & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127.CrossRefGoogle Scholar
Biberman, M., Vorobev, V.S. & Yakubov, I.T. (1987). Doklady Akademii Nauk, ser. Fisika 296, 576.Google Scholar
Boldarev, A.S., Gasilov, V.A., Faenov, A.Ya., Fukuda, Y. & Yamakawa, K. (2006). Gas-cluster targets for femtosecond laser interaction: Modeling and optimization. Rev. Sci. Instrum. 77, 083112.CrossRefGoogle Scholar
Borisov, A.B., Mcpherson, A., Boyer, K. & Rhodes, C.K. (1996). Intensity dependence of the multiphoton-induced Xe(L) spectrum produced by subpicosecond 248 nm excitation of Xe clusters J. Phys. B 29, L43.CrossRefGoogle Scholar
Boyer, K. & Rhodes, C.K. (1994). Superstrong coherent multi-electron intense-field interaction. J. Phys. B 27, L663.CrossRefGoogle Scholar
Briand, J.P., De Billy, L., Charles, P., Essabaa, S., Geller, R., Desclaux, J.P., Bliman, S. & Rastori, C. (1990). Production of hollow atoms by the excitation of highly charged ions in interaction with a metallic surface. Phys. Rev. Lett. 65, 159.CrossRefGoogle ScholarPubMed
Briand, J.P., Giardino, G., Borsoni, G., Froment, M., Eddrief, M., Sebenne, C., Bardin, S., Schneider, D., Jin, J., Khemliche, H. & Prior, M. (1996). Decay of hollow atoms above and below a surface. Phys. Rev. A 54, 4136.CrossRefGoogle ScholarPubMed
Cao, L.F., Uschmann, I., Zamponi, F., Kampfer, T., Fuhrmann, A., Forster, E., Holl, A., Redmer, R., Toleikis, S., Tschentscher, T. & Glenzer, S.H. 2007. Space-time characterization of laser plasma interactions in the warm dense matter regime. Laser Part. Beams 25, 239.CrossRefGoogle Scholar
Cowan, R.D. (1981). The Theory of Atomic Structure and Spectra (University of California Press, Berkeley).CrossRefGoogle Scholar
Diamant, R., Huotari, S., Hämäläinen, K., Kao, C.C. & Deutsch, M. (2000 a). Evolution from threshold of a hollow atom's x-ray emission spectrum: The Cu K h α1,2 hypersatellites. Phys. Rev. Lett. 84, 3278.CrossRefGoogle Scholar
Diamant, R., Huotari, S., Hämäläinen, K., Kao, C.C. & Deutsch, M. (2000 b). Cu K h α1,2 hypersatellites: suprathreshold evolution of a hollow-atom x-ray spectrum. Phys. Rev. A 62, 052519.CrossRefGoogle Scholar
Diamant, R., Huotari, S., Hämäläinen, K., Sharon, R., Kao, C.C. & Deutsch, M. (2001). Structure of the W L α1,2 X-ray spectrum. Phys. Rev. A 63, 022508.CrossRefGoogle Scholar
Ditmire, T., Donnelly, T., Rubenchik, A.M., Falcone, R.W. & Perry, M.D. (1996). Interaction of intense laser pulses with atomic clusters. Phys. Rev. A 53, 3379.CrossRefGoogle ScholarPubMed
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., de Silvestri, S., Poletto, L., Villoresi, P. & Andreev, A.A. 2007. X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267.CrossRefGoogle Scholar
Faenov, A.Ya., Pikuz, S.A., Erko, A.I., Bryunetkin, B.A., Dyakin, V.M., Ivanenkov, G.V., Mingaleev, A.R., Pikuz, T.A., Romanova, V.M. & Shelkovenko, T.A. (1994). High-performance x-ray spectroscopic devices for plasma microsources investigations. Physi. Scripta 50, 333.CrossRefGoogle Scholar
Faenov, A.Ya., Magunov Pikuz, T.A, Skobelev, I.Y., Pikuz, S.A., Urnov, A.M., Abdallah, J., Clark, R. E. H., Cohen, J., Jonson, R.P., Kyrala, G.A., Wilke, M.D., Maksimchuk, A., Umstadter, D., Nantel, N., Doron, R., Behar, E., Mandelbaum, P., Schwob, J.J., Dubau, J., Rosmej, F.B. & Osterheld, A. (1999). High-resolved X-ray spectra of hollow atoms in a femtosecond laser-produced solid plasma. Physi. Scripta T80, 536.CrossRefGoogle Scholar
Faenov, A.Y., Skobelev, I.Y., Magunov, A.I., Pikuz, T.A., Abdallah, J., Junkel-Vives, G.C., Blasco, F., Dorchies, F., Stenz, C., Salin, F., Auguste, T., Dobosz, S., Monot, P., D' Oliveira, P., Hulin, S., Boldarev, A. & Gasilov, V.A. (2001). X-ray radiation properties of clusters heated by fs laser pulses. Proce. SPIE 4504, 121132.CrossRefGoogle Scholar
Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Kishimoto, Y., Yamakawa, K., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Abdallah, J., Csanak, G., Boldarev, A.S. & Gasilov, V.A. (2004). Generation of X rays and energetic ions from superintense laser irradiation of micron-sized Ar clusters Laser Part. Beams 22, p. 215220.CrossRefGoogle Scholar
Fukuda, Y., Yamakawa, K., Akahane, Y., Aoyama, M., Inoue, N., Ueda, U., Abdallah, J., Csanak, G., Faenov, A.Ya., Magunov, A.I., Pikuz, T.A., Skobelev, I.Yu., Boldarev, A.S. & Gasilov, V.A. (2003). X-ray study of microdroplet plasma formation under the action of superintense laser radiation. JETP Letters 78, 115.CrossRefGoogle Scholar
Gauthier, J.-C., Geindre, J.-P., Audebert, P., Rousse, A., Dos Santos, A., Grillon, G., Antonetti, A. & Mancini, R.C. (1995). Observation of KL → LL X-ray satellites of aluminum in femtosecond laser-produced plasmas. Phys. Rev. E 52, 2963.CrossRefGoogle ScholarPubMed
Kado, M., Daido, H., Fukumi, A., Li, Z., Orimo, S., Hayashi, Y., Nishiuchi, M., Sagisaka, A., Ogura, K., Mori, M., Nakamura, S., Noda, A., Iwashita, Y., Shirai, T., Tongu, H., Takeuchi, T., Yamazaki, A., Itoh, H., Souda, H., Nemoto, K., Oishi, Y., Nayuki, T., Kiriyama, H., Kanazawa, S., Aoyama, M., Akahane, Y., Inoue, N., Tsuji, K., Nakai, Y., Yamamoto, Y., Kotaki, H., Kondo, S., Bulanov, S., Esirkepov, T., Utsumi, T., Nagashima, A., Kimura, T. & Yamakawa, K. (2006). Observation of strongly collimated proton beam from Tantalum targets irradiated with circular polarized laser pulses. Laser Part. Beams 24, 117.CrossRefGoogle Scholar
Kanapathipillai, M. (2006). Nonlinear absorption of ultra short laser pulses by clusters. Laser Part. Beams 24, 9.CrossRefGoogle Scholar
Kiriyama, H., Mori, M., Nakai, Y., Yamamoto, Y., Tanoue, M., Akutsu, A., Shimomura, T., Kondo, S., Kanazawa, S., Daido, H., Kimura, T. & Miyanaga, N. (2007). High-energy, high-contrast, multiterawatt laser pulses by optical parametric chirped-pulse amplification. Optic Lett. 32, 2315.CrossRefGoogle ScholarPubMed
Lévy, A., Ceccotti, T., D'Oliveira, P., Réau, F., Perdrix, M., Quéré, F., Monot, P., Bougeard, M., Lagadec, H., Martin, P., Geindre, J.-P. & Audebert, P. (2007). Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses. Opt. Lett. 32, 310.CrossRefGoogle ScholarPubMed
Magee, N.H., Abdallah, J., Colgan, J., Hakel, P., Kilcrease, D.P., Mazevet, S., Sherrill, M., Fontes, C.J. & Zhang, H.L. (2004). Los Alamos Opacities: Transition from LEDCOP to ATOMIC. 14th APS Topical Conference on Atomic Processes in Plasmas, (Cohen, J.S., Mazevet, S.Kilcrease, D.P., eds.) p. 168. New York AIP Conference Proceedings.Google Scholar
Mazevet, S. & Abdallah, J Jr. (2006). Mixed UTA and detailed line treatment for mid-Z opacity and spectral calculations. J. Phys. B 39, 3419.CrossRefGoogle Scholar
Mcpherson, A., Thompson, B.D., Borisov, A.B., Boyer, K. & Rhodes, C.K. (1994 a). Multiphoton-induced x-ray emission at 4–5 keV from Xe atoms with multiple core vacancies Nature 370, 631.CrossRefGoogle Scholar
Mcpherson, A., Luk, T.S., Thompson, B.D., Borisov, A.B., Shirayev, O.B., Chen, X., Boyer, K. & Rhodes, C.K. (1994 b). Multiphoton induced X-ray emission from Kr clusters on M-shell (100 Å) and L-shell (6 Å) transitions. Phys. Rev. Lett. 72, 1810.CrossRefGoogle ScholarPubMed
Moribayashi, K.Suto, K., Zhidkov, A., Sasaki, A. & Kagawa, T., (2001). X-ray emission from hollow atoms produced by collisions of multiply charged ions with a solid. Laser Part. Beams 19, 643.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347.CrossRefGoogle Scholar
Riley, D., Weaver, I., Mcsherry, D., Dunne, M., Neely, D., Notley, M. &. Nardi, E. (2002). Direct observation of strong coupling in a dense plasma Phys. Rev. E 66, 046408.CrossRefGoogle Scholar
Rosmej, F.B., Faenov, A.Ya., Pikuz, T.A., Magunov, A.I., Skobelev, I.Y., Auguste, T., D'Oliveira, P., Hulin, S., Monot, P., Andreev, N.E., Chegotov, M.V. & Veisman, M.E. (1999). Charge-exchange-induced formation of hollow atoms in high-intensity laser-produced plasmas. J. Phys. B 32, L107.CrossRefGoogle Scholar
Rosmej, F.B., Funk, U.N., Geissel, M., Hoffmann, D.H.H., Tauschwitz, A., Faenov, A.Ya., Pikuz, T.A., Skobelev, I.Yu., Flora, F., Bollanti, S., Di Lazzaro, P., Letardi, T., Grilli, A., Palladino, L., Reale, A., Tomassetti, G., Scafati, A., Reale, L., Auguste, T., D'Oliveira, P., Hulin, S., Monot, P., Maksimchuk, A., Pikuz, S.A., Umstadter, D., Nantel, M., Bock, R., Dornik, M., Stetter, M., Stöwe, S., Yakushev, V., Kulisch, M. & Shilkin, N. (2000). X-ray radiation from ions with K-shell vacancies. J. Quant. Spectr. Rad. Transfer 65, 477.CrossRefGoogle Scholar
Rosmej, F.B., Hoffmann, D.H.H., Suess, W., Geissel, M., Rosmej, O.N., Faenov, A.Y., Pikuz, T.A., Auguste, T., D'Oliveira, P., Hulin, S., Monot, P., Hansen, J.E. & Verbookhaven, G. 2001. High-resolution X-ray imaging spectroscopy diagnostic of hollow ions in dense plasmas. Nucl. Instr. 464, 257.CrossRefGoogle Scholar
Rosmej, F.B. & Lee, R.W. (2007). Hollow ion emission driven by pulsed intense X-ray fields Euro. Phys. Letts. 77, 2400.Google Scholar
Sherrill, M.E., Abdallah, J. Jr., Csanak, G., Dodd, E.S., Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., K. Yamakawa, K., Faenov, A.Ya., Magunov, A.I., Pikuz, T.A. & Skobelev, I.Y. (2006). Spectroscopic characterization of an ultrashort-pulse-laser-drive Ar cluster target incorporating both Boltzmann and particle-in-cell models. Phys. Rev. E 73, 066404.CrossRefGoogle ScholarPubMed
Shigeoka, N., Oohashi, H., Tochio, T., Ito, Y., Mukoyama, T., Vlaicu, A.M. & Fukushima, S. (2004). Experimental investigation of the origin of the Ti K α′′ satellites. Phys. Rev. A 69, 052505.CrossRefGoogle Scholar
Skobelev, I.Yu., Faenov, A.Ya., Magunov, A.I., Pikuz, T.A., Boldarev, A.S., Gasilov, V.A., Abdallah, J., Junkel-Vives, G.C., Auguste, T., Dobosz, S., D'oliveira, P., Hulin, S., Monot, P., Blasco, F., Dorchies, F., Caillaud, T., Bonte, C., Stenz, C., Salin, F., Loboda, P.A., Litvinenko, I.A., Popova, V.V., Baidin, G.V. & Sharkov, B.Yu., (2002). X-ray spectroscopy diagnostic of a plasma produced by femtosecond laser pulses irradiating a cluster target. JETP 94, 966.CrossRefGoogle Scholar
Suto, K. & Kagawa, T. (1998). Multistep-capture-and-loss model for stabilization processes of hollow Ar atoms formed in a solid. Phys. Rev. A 58, 5004.CrossRefGoogle Scholar
Yamakawa, K., Aoyama, M., Matsuoka, S., Kase, T., Akahane, Y. & Takuma, H. (1998). 100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate. Opt. Lett. 23, 1468.CrossRefGoogle Scholar