Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-nrv4r Total loading time: 0.176 Render date: 2021-07-24T03:09:59.893Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Research on the development of a method of spatially temporary smoothing of a high-power laser beam

Published online by Cambridge University Press:  01 October 1999

V.N. DERKACH
Affiliation:
Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, 607190, Prospect Mira 37, Sarov, Nizhni Novgorod Region, Russia
S.V. BONDARENKO
Affiliation:
Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, 607190, Prospect Mira 37, Sarov, Nizhni Novgorod Region, Russia
S.G. GARANIN
Affiliation:
Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, 607190, Prospect Mira 37, Sarov, Nizhni Novgorod Region, Russia
A.I. GROMOV
Affiliation:
Lebedev Physical Institute, Moscow, Russia
S.J. GUS'KOV
Affiliation:
Lebedev Physical Institute, Moscow, Russia
G.A. KIRILLOV
Affiliation:
Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, 607190, Prospect Mira 37, Sarov, Nizhni Novgorod Region, Russia
J.F. KIR'YANOV
Affiliation:
Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, 607190, Prospect Mira 37, Sarov, Nizhni Novgorod Region, Russia
G.G. KOCHEMASOV
Affiliation:
Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, 607190, Prospect Mira 37, Sarov, Nizhni Novgorod Region, Russia
A.G. KRAVCHENKO
Affiliation:
Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, 607190, Prospect Mira 37, Sarov, Nizhni Novgorod Region, Russia
T.E. LYBUNSKAYA
Affiliation:
Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, 607190, Prospect Mira 37, Sarov, Nizhni Novgorod Region, Russia
J.A. MERKUL'EV
Affiliation:
Lebedev Physical Institute, Moscow, Russia
G.P. OKUTIN
Affiliation:
Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, 607190, Prospect Mira 37, Sarov, Nizhni Novgorod Region, Russia
S.I. PETROV
Affiliation:
Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, 607190, Prospect Mira 37, Sarov, Nizhni Novgorod Region, Russia
N.N. RUKAVISHNIKOV
Affiliation:
Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, 607190, Prospect Mira 37, Sarov, Nizhni Novgorod Region, Russia
N.A. SUSLOV
Affiliation:
Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, 607190, Prospect Mira 37, Sarov, Nizhni Novgorod Region, Russia
S.A. SUKHAREV
Affiliation:
Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, 607190, Prospect Mira 37, Sarov, Nizhni Novgorod Region, Russia

Abstract

The investigations of the influence of various types of wavefront distortions, varying in time, on the intensity distribution on the surface of a target are carried out. It is shown that distortions of a wavefront, equivalent to transverse displacement in time of a beam in far field at an angle of approximately 10 diffraction angles, results in practically full smoothing of a specl-structure of intensity distribution. Creation of phase distortions of a beam assigned as running in a cross section wave with an amplitude of more than 3 radian and with a spatial size exceeding 20–30 times the size of the kinoform phase plate element, permits us to reduce the depth of modulation in distribution of intensity in far field also. The capability of application is considered as a smoothing device of the dynamic plasma layer, based on the volume-structured medium. The model of energy transport process in such media is developed. Matching of calculation and experimental results is conducted.

Type
Research Article
Copyright
1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Research on the development of a method of spatially temporary smoothing of a high-power laser beam
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Research on the development of a method of spatially temporary smoothing of a high-power laser beam
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Research on the development of a method of spatially temporary smoothing of a high-power laser beam
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *