Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-745jg Total loading time: 0.743 Render date: 2022-06-30T04:51:45.102Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Relativistic self-focusing and self-phase modulation of cosh-Gaussian laser beam in magnetoplasma

Published online by Cambridge University Press:  22 March 2011

Tarsem Singh Gill*
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
Ravinder Kaur
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
Ranju Mahajan
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
*
Address correspondence and reprint requests to: Tarsem Singh Gill, Department of Physics, Guru Nanak Dev University, Amristar 143005, India. E-mail: gillsema@yahoo.co.in

Abstract

In this paper, we have investigated the propagation characteristics of cosh-Gaussian laser beam in magnetoplasma using relativistic nonlinearity. The field distribution in the medium is expressed in terms of beam width parameter an and decentred parameter b. An appropriate nonlinear Schräodinger equation has been solved analytically using variational approach. The behaviour of beam width parameter with dimensionless distance of propagation ξ for various b values is examined. Self-phase modulation and self-trapping is also studied under variety of parameters. Further, the effect of magnetic field on self-focusing of the beam have been explored.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhmanov, S.A., Schnorkel, A.P. & Chekhov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. 10, 609636.CrossRefGoogle Scholar
Anderson, D. (1978). Stationary self-trapped laser beams in plasma. Phys. Scripta 18, 3536CrossRefGoogle Scholar
Anderson, D. (1983). Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A 27, 31353145.CrossRefGoogle Scholar
Anderson, D., Bonnedal, M. & Lisak, M. (1979). Self-trapped cylindrical laser beams. Phys. Fluids 22, 18381840.CrossRefGoogle Scholar
Anderson, D., Bonnedal, M. & Lisak, M. (1980). Nonlinear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115127.CrossRefGoogle Scholar
Arevalo, E. & Becker, A. (2005). Theoretical analysis of fluorescence in fragmentation of nanosecond laser pulses in nitrogen molecular gas. Phys. Rev. A 72, 0438071–5.CrossRefGoogle Scholar
Askaryan, G.A. (1962). Effect of the gradient of a strong electromagnetic beam on electron and atoms. J. Exp. Their. Phys. 42, 15671570.Google Scholar
Benware, B.R., Macchietto, C.D., Moreno, C.H. & Rocca, J.J. (1998). Demonstration of a high average power tabletop soft X-ray laser. Phys. Rev. Lett. 81, 58045807.CrossRefGoogle Scholar
Cai, Y. & Lin, Q. (2004). Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems. J. Opt. Soc. Am. A 21, 10581065.CrossRefGoogle ScholarPubMed
Casperson, L.W., Hall, D.G. & Tovar, A.A. (1997). Sinusoidal-Gaussian beams in complex optical systems. J. Opt. Soc. Am. A 14, 33413348.CrossRefGoogle Scholar
Cattani, F., Kim, A., Anderson, D. & Lisak, M. (2000). Threshold of induced transparency in the relativistic interaction of an electromagnetic wave with overdense plasmas. Phys. Rev. E 62, 12341237.CrossRefGoogle ScholarPubMed
Chen, S.Y., Sarkisov, G.S., Maksimchuk, A., Wagner, R. & Umstadter, D. (1998). Evolution of a plasma waveguide created during relativistic-ponderomotive self-channeling of an intense laser pulse. Phys. Rev. Lett. 80, 26102613.CrossRefGoogle Scholar
Chen, S. & Wang, J. (1991). Self starting issues of passive self-focusing mode locking. Opt. Lett. 16, 16891691.CrossRefGoogle ScholarPubMed
Chessa, P., Mora, P. & Antonsen, T.M. (1998). Numerical simulation of short laser pulse relativistic self-focusing in underdense plasma. Phys. Plasma 5, 34513458.CrossRefGoogle Scholar
Chiao, R.Y., Garmire, E. & Townes, C.H. (1964). Self-trapping of optical beams. Phys. Rev. Lett. 13, 479482.CrossRefGoogle Scholar
Cornolti, F., Lunches, M. & Zambian, B. (1990). Elliptic Gaussian beam of self-focusing in nonlinear media. Opt. Common. 75, 129135.CrossRefGoogle Scholar
Deutsch, C., Furkawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quant. Electr. 33, 18791914.CrossRefGoogle Scholar
Eyyuboglu, H.T. & Baykal, Y. (2004). Analysis of reciprocity of cosh-Gaussian beams in turbulent atmosphere. Opt Exp 12, 46594674.CrossRefGoogle ScholarPubMed
Eyyuboglu, H.T. & Baykal, Y. (2005). Average intensity and spreading of cosh-Gaussian beams in a turbulent atmosphere. Appl Opt 44, 976983.CrossRefGoogle Scholar
Fedotov, A.B., Naumov, A.N., Silin, V.P., Uryupin, S.A., Zheltikov, A.M., Tarasevitch, A.P. & Von der Linde, D. (2000). Third-harmonic generation in a laser-pre-exrefd gas: the role of excited-state neutrals. Phys. Lett. A 271, 407412.CrossRefGoogle Scholar
Fibich, G. (2007). Some modern aspects of self-focusing theory, a chapter in self-focusing: Past and present (Boyd, R.W., Lukishova, S.G. & Shen, Y.R., eds.). New York: Springer Verlag.Google Scholar
Firth, W.J. (1977). Propagation of laser beams through inhomogeneous media. Opt. Commun. 22, 226230.CrossRefGoogle Scholar
Foldes, I.B., Bakos, J.S., Bakonyi, Z., Nagy, T. & Szatmari, S. (1999). Harmonic generation in plasmas of different density gradients. Phys. Lett. A 258, 312316.CrossRefGoogle Scholar
Fuchs, J., Adam, J.C., Amiranoff, F., Baton, S.D., Gallant, P., Gremillet, L., Héron, A., Kieffer, J.C., Laval, G., Malka, G., Miquel, J.L., Mora, P., Ppin, H. & Rousseaux, C. (1998). Transmission through highly overdense plasma slabs with a subpicosecond relativistic laser pulse. Phys. Rev. Lett. 80, 23262329.CrossRefGoogle Scholar
Gill, T.S., Saini, N.S. & Kaul, S.S. (2000). Dynamics of self-focusing and self-phase modulation of elliptic Gaussian laser beam in a Kerr-medium. Pramana J. Phys. 55, 423431.Google Scholar
Gill, T.S., Saini, N.S. & Kaul, S.S. (2001). Two dimensional self-focusing of a laser beam in an inhomogeneous laser produced plasma. J. Plasma Phys. 66, 3951.CrossRefGoogle Scholar
Gill, T.S., Saini, N.S., Kaul, S.S. & Singh, A. (2004). Propagation of elliptic Gaussian laser beam in a higher order non-linear medium. Optik 115, 493498.CrossRefGoogle Scholar
Gill, T.S., Mahajan, R. & Kaur, R. (2010 a). Relativistic and ponderomotive effects on evolution of laser beam in a non-uniform plasma channel. Laser Part. Beams 28, 1120.CrossRefGoogle Scholar
Gill, T.S., Mahajan, R. & Kaur, R. (2010 b). Relativistic and ponderomotive effects on evolution of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 28, 521529.CrossRefGoogle Scholar
Gill, T.S., Kaur, R. & Mahajan, R. (2010 c). Propagation of high power electromagnetic beam in relativistic magnetoplasma: Higher order paraxial ray theory. Phys. Plasmas 17, 0931011–6.CrossRefGoogle Scholar
Grow, T.D., Ishaaya, A.A., Vuong, L.T., Gaeta, A.L., Gavish, N. & Fibich, G. (2006). Collapse dynamics of super-Gaussian beams. Opt. Express 14, 54685475.CrossRefGoogle ScholarPubMed
Hartemann, F.V., Van Meter, J.R., Troha, A.L., Landahl, E.C., Luhmann, N.C., Baldis, H.A., Gupta, A. & Kerman, A.K. (1998). Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus. Phys. Rev. E 88, 50015012.CrossRefGoogle Scholar
Hauser, T., Scheid, W. & Hora, H. (1994). Acceleration of electrons by intense laser pulses in vacuum. Phys. Lett. A 186, 189192.CrossRefGoogle Scholar
Herrmann, H. (1994). Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain. J. Opt. Soc. Am. B 18, 498512.CrossRefGoogle Scholar
Hora, H. (1969). Self-focusing of laser beams in a plasma by ponderomotive forces. Zeitschriftd. Physik 226, 156159.CrossRefGoogle Scholar
Hora, H., Hoeless, M., Scheid, W., Wang, J.W., Ho, Y.K., Osman, F. & Castillo, R. (2000). Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser Part. Beams 18, 135144.CrossRefGoogle Scholar
Hora, H. (1988). Particle acceleration by superposition of frequency-controlled laser pulses. Nature(London) 333, 337338.CrossRefGoogle Scholar
Johannisson, P., Anderson, D., Lisak, M. & Marklund, M. (2003). Nonlinear Bessel beams.Opt. Commun. 222, 107115.CrossRefGoogle Scholar
Karlsson, M. (1992). Optical beams in saturable self-focusing media. Phys. Rev. A 46, 27262734.CrossRefGoogle ScholarPubMed
Kaur, R., Gill, T.S. & Mahajan, R. (2010). Steady state self-focusing, self-phase modulation of laser beam in an inhomogeneous plasma. Optik (In Press).Google Scholar
Kaur, R., Gill, T.S. & Mahajan, R. (2010). Self-focusing, self modulation and stability properties of laser beam propagating in plasma: A variational approach. JPCS 208, 0120861–10.Google Scholar
Konar, S., Mishra, M. & Jana, S. (2007). Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic cuintic nonlinear media. Phys. Lett. A 362, 505510.CrossRefGoogle Scholar
Kruglov, V.I. & Vlasov, R.A. (1985). Spiral self-trapping propagation of optical beams in media with cubic nonlinearity. Phys. Lett. A 111, 401404.CrossRefGoogle Scholar
Krushelnick, K., Ting, A., Moore, C.I., Burris, H.R., Esarey, E., Sprangle, P. & Baine, M. (1997). Plasma channel formation and guiding during high intensity short pulse laser plasma experiments. Phys. Rev. Lett. 78, 40474050.CrossRefGoogle Scholar
Lemoff, B.E., Yin, G.Y., Gordon, C.L., Barty, C.P.J., & Harris, S.E. (1995). Demonstration of a 10-Hz femtosecond-pulse-driven XUV Laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74, 15741577.CrossRefGoogle Scholar
Lu, B., Ma, H. & Zhang, B. (1999). Propagation properties of cosh-Gaussian beams. Opt Commun 164, 269276.CrossRefGoogle Scholar
Lu, B. & Luo, S. (2000). Beam propagation factor of hard-edged diffracted cosh-Gaussian beams. Opt Commun 178, 275281.CrossRefGoogle Scholar
Mahajan, R., Gill, T.S. & Kaur, R. (2010). Nonlinear dynamics of intense EM pulses in plasma. JPCS 208, 0120871–11.Google Scholar
Misra, S. & Mishra, S.K. (2009). Ring formation in electromagnetic beams propagating in magnetoplasma. J. Plasma Phy. 75, 769785.CrossRefGoogle Scholar
Monot, P., Auguste, T., Gibbon, P., Jakober, F., Mainfray, G., Dulieu, A., Louis-Jacquet, M., Malka, G. & Miquel, J.L. (1995). Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 29532956.CrossRefGoogle Scholar
Manassah, J.T., Baldeck, P.L. & Alfano, R.R. (1988). Self-focusing and self-phase modulation in a parabolic graded-index optical fiber. Opt. Lett. 13, 589591.CrossRefGoogle Scholar
Nayyar, V.P. (1986). Nonlinear propagation of degenerate modes of a laser cavity. J. Opt. Soc. Am. B 3, 711714.CrossRefGoogle Scholar
Pandey, B.K. & Tripathi, V.K. (2009). Anomalous transmission of an intense short-pulse laser through a magnetized overdense plasma. Phys. Scr. 79, 025101.Google Scholar
Patil, S.D., Takale, M.V., Navare, S.T., Fulart, V.J. & Dongare, M.B. (2007). Analytical study of HChG- laser beams in collisional and collisionless plasma. J. Opt. 36, 136144.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V., Fulart, V.J. & Dongare, M.B. (2008). Propagation of Hermite-cosh-Gaussian laser beams in nondegenerate germanium having space charge neutrality. J. Mod. Opt. 55, 35293535.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V. & Dongare, M.B. (2010). Focusing of Hermite-cosh-Gaussian laser beams in collisionless magnetoplasma. Laser Part. Beams 28, 343349.CrossRefGoogle Scholar
Regan, S.P., Bradley, D.K., Chirokikh, A.V., Craxton, R.S., Meyerhofer, D.D., Seka, W., Short, R.W., Simon, A., Town, R.P.J. & Yaakobi, B. (1999). Laser-plasma interactions in long-scale-length plasmas under direct-drive national ignition facility conditions. Phys. Plasmas 6, 20722080.CrossRefGoogle Scholar
Saini, N.S. & Gill, T.S. (2006). Self-focusing and self-phase modulation of an elliptic Gaussian laser beam in collisionless magnetoplasma. Laser Part. Beams 24, 447453.CrossRefGoogle Scholar
Sarkisov, G.S., Bychenkov, V.Yu., Novikov, V.N., Tikhonchuk, V.T., Maksimchuk, A., Chen, S.-Y., Wagner, R., Mourou, G. & Umstadter, D. (1999). Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet. Phys. Rev. E 59, 70427054.CrossRefGoogle ScholarPubMed
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Progr. Optics 13, 169.Google Scholar
Sodha, M.S., Singh, T., Singh, D.P. & Sharma, R.P. (1981). Growth of laser ripple in a plasma and its effect on plasma wave excitation. Phys. Fluids 24, 914919.CrossRefGoogle Scholar
Sodha, M.S., Mishra, S.K. & Misra, S. (2009 a). Focusing of dark hollow Gaussian electromagnetic beams in a magnetoplasma. J. Plasma Phys. 75, 731748.CrossRefGoogle Scholar
Sodha, M.S., Mishra, S.K. & Misra, S. (2009 b). Focusing of dark hollow Gaussian electromagnetic beams in plasma. Laser Part.Beams 27, 5768.CrossRefGoogle Scholar
Soudagar, M.K., Bote, S.R., Wali, A.A. & Khandekar, R.N. (1994). Propagation of TEMPO laser beams in a parabolic medium. Pure Appl Phys 30, 751753.Google Scholar
Sprangle, P. & Esarey, E. (1990). Stimulated backscattered harmonic generation from intense laser interactions with beams and plasmas. Phys. Rev. Lett. 67, 20212024.CrossRefGoogle Scholar
Subbarao, D., Uma, R. & Singh, H. (1998). Paraxial theory of self-focusing of cylindrical laser beams. I. ABCD laws. Phys. Plasmas 5, 34403450.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Vshivkov, V.A., Naumova, N.M., Pegoraro, F. & Bulanov, S.V. (1998). Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil. Phys. Plasmas 5, 27272741.CrossRefGoogle Scholar
Yu, W., Yu, M.Y., Zhang, J. & Xu, Z. (1998). Model for the boring of ultraintense lasers into overdense plasmas. Phys. Rev. E 58, 65536556.CrossRefGoogle Scholar
Zakharov, V.I. (1972). Collapse of Langmuir waves. Sov. Phys. JETP 35, 908914.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Relativistic self-focusing and self-phase modulation of cosh-Gaussian laser beam in magnetoplasma
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Relativistic self-focusing and self-phase modulation of cosh-Gaussian laser beam in magnetoplasma
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Relativistic self-focusing and self-phase modulation of cosh-Gaussian laser beam in magnetoplasma
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *