Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-98q29 Total loading time: 0.528 Render date: 2022-06-30T17:48:54.178Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Relativistic and ponderomotive effects on evolution of laser beam in a non-uniform plasma channel

Published online by Cambridge University Press:  21 January 2010

T.S. Gill*
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
R. Mahajan
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
R. Kaur
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
*
Address correspondence and reprint requests to: T.S. Gill, Department of Physics, Guru Nanak Dev University, Amritsar 143005, India. E-mail: gillsema@yahoo.co.in

Abstract

The nonlinear parabolic partial differential equation governing the evolution of the complex envelope in the slowly varying envelope approximation is solved using the variational approach. The basic nonlinear phenomena of relativistic and ponderomotive self-focusing in a plasma channel are taken into account. Self-focusing, self-phase modulation as well as self-trapping of laser beam is studied in a variety of situations. Further, in the absence of dissipation mechanisms, the stability of the beam is also studied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullaev, F.K., Baizakov, B. & Salerno, M. (2003). Stable two-dimensional dispersion-managed soliton. Phys. Rev. E 68, 066605/1–4.Google Scholar
Ablowitz, M.J. & Mussliamani, Z.H. (2003). Dark and gray strong dispersion-managed solitons. Phys. Rev. E 67, 025601/1–4.Google Scholar
Abramyan, L.A., Litvak, A.G., Mironov, V.A. & Sergeev, A.M. (1992). Self-focusing and relativistic waveguiding of an ultrashort laser pulse in a plasma. Sov. Phys. JETP 75, 978.Google Scholar
Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp 10, 609636.Google Scholar
Anderson, D. & Bonnedal, M. (1979). Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105109.Google Scholar
Andreev, A.A., Erokhin, N.S., Sutyagin, A.N. & Fadeev, A.P. (1987). Self-focusing of a laser beam in an expanding plasma which is inhomogeneous in two dimensions. Soviet J. Plasma Phys. 13, 608613.Google Scholar
Benware, B.R., Macchietto, C.D., Moreno, C.H. & Rocca, J.J. (1998). Demonstration of a high average power tabletop soft X-ray laser. Phys. Rev. Lett. 81, 58045807.Google Scholar
Berge, L. (1998). Wave collapse in physics: principles and applications to light and plasma waves. Physics Rpt. 303, 259370.Google Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interactions. Laser Part. Beams 25, 161167.Google Scholar
Borisov, A.B., Borovskiy, A.V., Korobkin, V.V., Prokhorov, A.M., Shiryaev, O.B., Shi, X.M., Luk, T.S., McPherson, A., Solem, J.C., Boyer, K. & Rhodes, C.K. (1992). Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas. Phys. Rev. Lett. 68, 23092312.Google Scholar
Borisov, A.B., Longworth, J.W., Boyer, K. & Rhodes, C.K. (1998). Stable relativistic/charge-displacement channels in ultrahigh power density (1021 Watt/cm2) plasmas. Proc. Natl. Acad. Sci. 95, 78547859.Google Scholar
Chen, S.Y., Sarkisov, G.S., Maksimchuk, A., Wagner, R. & Umstadter, D. (1998). Evolution of a plasma waveguide created during relativistic-ponderomotive self-channeling of an intense laser pulse. Phys. Rev. Lett. 80, 26102613.Google Scholar
Chen, X.L. & Sudan, R.N. (1993). Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys. Rev. Lett. 70, 20822085.Google Scholar
Chessa, P., Mora, P. & Antonsen, T.M. (1998). Numerical simulation of short laser pulse relativistic self-focusing in underdense plasma. Phys. Plasma 5, 34513458.Google Scholar
Duda, B.J. & Mori, W.B. (2000). Variational principle approach to short-pulse laser-plasma interactions in three dimensions. Phys. Rev. E 61, 19251939.Google Scholar
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., De Silvestri, S., Poletto, L., Villoresi, P. & Andreev, A.A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267275.Google Scholar
Fauser, C. & Langhoff, H. (2000). Focussing of laser beams by means of a z-pinch formed plasma guiding system. Appl. Phy. B 71, 607609.Google Scholar
Fedotov, A.B., Naumov, A.N., Silin, V.P., Uryupin, S.A., Zheltikov, A.M., Tarasevitch, A.P. & Von der Linde, D. (2000). Third-harmonic generation in a laser-pre-exrefd gas: the role of excited-state neutrals. Phys. Lett. A 271, 407412.Google Scholar
Firth, W.J. (1977). Propagation of laser beams through inhomogeneous media. Opt. Commun. 22, 226230.Google Scholar
Foldes, I.B., Bakos, J.S., Bakonyi, Z., Nagy, T. & Szatmari, S. (1999). Harmonic generation in plasmas of different density gradients. Phys. Lett. A 258, 312316.Google Scholar
Gill, T.S., Saini, N.P. & Kaul, S.S. (2001). Two-dimensional self-focusing of a laser beam in an inhomogeneous laser-produced plasma. J. Plasma Phys. 66, 3951.Google Scholar
Hafizi, B., Ting, A., Hubbard, R.F., Sprangle, P. & Penano, J.R. (2003). Relativistic effects on intense laser beam propagation in plasma channels. Phys. Plasma 10, 14831492.Google Scholar
Hafizi, B., Ting, A., Sprangle, P. & Hubbard, R.F. (2000). Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E 62, 41204125.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspective for high energy density physics with intense heavy ions and laser beams. Laser Part. Beams 23, 395–395.Google Scholar
Karlsson, M., Anderson, D., Desaix, M. & Lisak, M. (1991). Dynamic effects of Kerr nonlinearity and spatial diffraction on self-phase modulation of optical pulses. Opt. Lett. 16, 13731375.Google Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.Google Scholar
Konar, S. & Manoj, M. (2005). Effect of higher order nonlinearities on induced focusing and on the conversion of circular Gaussian laser beams into elliptic Gaussian laser beam. J. Opt. A: Pure Appl. Opt. 7, 576.Google Scholar
Krushelnick, K., Ting, A., Moore, C.I., Burris, H.R., Esarey, E., Sprangle, P. & Baine, M. (1997). Plasma channel formation and guiding during high intensity short pulse laser plasma experiments. Phys. Rev. Lett. 78, 40474050.Google Scholar
Kuehl, Th., Ursescu, D., Bagnoud, V., Javorkova, D., Rosmej, O., Cassou, K., Kazamias, S., Klisnick, A., Ros, D., Nickles, P., Zielbauer, B., Dunn, J., Neumayer, P., Pert, G. & The Phelix Team. (2007). Optimization of non thermal incidence, transient pumped plasma X-ray laser for laser spectroscopy and plasma diagnostics at the facility for antiproton and ion research (FAIR). Laser Part. Beams 25, 9397.Google Scholar
Kurki-Suonio, T., Morrison, P.J. & Tajima, T. (1989). Self-focusing of an optical beam in a plasma. Phys. Rev. A 40, 32303239.Google Scholar
Lakshman, M. & Rajasekar, S. (2003). Nonlinear Dynamics. New York: Springer Verlag.Google Scholar
Lam, J.F., Lippmann, B. & Tappert, F. (1975). Moment theory of self-trapped laser beams with nonlinear saturation. Opt. Commun. 15, 419421.Google Scholar
Lam, J.F., Lippmann, B. & Tappert, F. (1977). Self-trapped laser beams in plasma. Phys. Fluids 20, 11761179.Google Scholar
Landau, L.D. & Lifshitz, E.M. (1976). Mechanics. Oxford: Pergammon Press.Google Scholar
Laska, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krasa, J., Krousky, E., Parys, P., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J. & Wolowski, J. (2007). Factor influencing parameters of laser ion sources. Laser Part. Beams 25, 199205.Google Scholar
Liu, M., Guo, H., Zhou, B., Li, W., Li, B. & Wu, G. (2004). Effects of relativistic and channel focusing on an intense laser beam propagating in a plasma channel: variational analysis. Phys. Lett. A 333, 478484.Google Scholar
Lugiato, L.A. & Narducci, L.M. (1985). Single-mode and multimode instabilities in lasers and related optical systems. Phys. Rev. A 32, 15761587.Google Scholar
Matuszewski, M., Trippenbach, M., Malomed, B.A., Infeld, E. & Skorupski, A.A. (2004). Two-dimensional dispersion-managed light bullets in Kerr media. Phys. Rev. E 70, 016603/1–6.Google Scholar
Monot, P., Auguste, T., Gibbon, P., Jakober, F., Mainfray, G., Dulieu, A., Louis-Jacquet, M., Malka, G. & Miquel, J.L. (1995). Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 29532956.Google Scholar
Panwar, A. & Sharma, A.K. (2009). Self-phase modulation of a laser in self created plasma channel. Laser Part. Beams 27, 249253.Google Scholar
Regan, S.P., Bradley, D.K., Chirokikh, A.V., Craxton, R.S., Meyerhofer, D.D., Seka, W., Short, R.W., Simon, A., Town, R.P.J. & Yaakobi, B. (1999). Laser-plasma interactions in long-scale-length plasmas under direct-drive National Ignition Facility conditions. Phys. Plasmas 6, 20722080.Google Scholar
Saini, N.P. & Gill, T.S. (2006). Self-focusing and self-phase modulation of an elliptic Gaussian laser beam in collisionless magnetoplasma. Laser Part. Beams 24, 447453.Google Scholar
Sarkisov, G.S., Bychenkov, V.Yu., Novikov, V.N., Tikhonchuk, V.T., Maksimchuk, A., Chen, S.-Y., Wagner, R., Mourou, G. & Umstadter, D. (1999). Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet. Phys. Rev. E 59, 70427054.Google Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.Google Scholar
Skarka, V. & Aleksic, N.B. (2006). Stability criterion for dissipative soliton solutions of one-, two-, and three dimensional complex cubic quintic Ginzburg-Landau equations. Phys. Rev. Lett. 96, 013903/1–4.Google Scholar
Skarka, V., Berezhiani, V.I. & Miklaszewski, R. (1997). Spatiotemporal soliton propagation in saturating nonlinear optical media. Phys. Rev. E 56, 10801087.Google Scholar
Skarka, V., Berezhiani, V.I. & Miklaszewski, R. (1999). Generation of light spatiotemporal solitons from asymmetric pulses in saturating nonlinear media. Phys. Rev. E 59, 12701273.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self-Focusing of Laser Beams in Dielectric Plasma and Semi Conductors. New York: Tata McGraw-Hill.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self-focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 171265.Google Scholar
Sprangle, P., Hafizi, B. & Penano, J.R. (2000). Laser pulse modulation instabilities in plasma channels. Phys. Rev. E 61, 43814393.Google Scholar
Stoehlker, T., Backe, H., Beyer, H., Bosch, F., Braeuning-Demian, A., Hagman, S., Ionescu, D., Jungmann, K., Kluge, H.-J., Kozhuharov, C., Kuehl, Th., Lisen, D., Mann, R., Mokler, P. & Quint, W. (2003). Status and perspectives of atomic physics research at GSI: The new GSI accelerator project. Nucl. Instr. Meth. B 205, 156.Google Scholar
Strangio, C., Caruso, A., Neely, D., Andreoli, P.L., Anzalone, R., Clarke, R., Cristofari, G., DelPrete, E., Di Giorgio, G., Murphy, C., Ricci, C., Stevens, R. & Tolley, M. (2007). Production of multi-Mev per nucleon ions in the controlled amount of matter mode (CAM) by using casually isolated targets. Laser Part. Beams 25, 8591.Google Scholar
Subbarao, D., Uma, R. & Singh, H. (1998). Paraxial theory of self-focusing of cylindrical laser beams. I. ABCD laws. Phys. Plasmas 5, 34403450.Google Scholar
Suckewer, S. & Skinner, C.H. (1990). Soft X-ray lasers and their applications. Sci. 247, 1553.Google Scholar
Suckewer, S. & Skinner, C.H. (1995). Comments. At. Mol. Phys. 30, 331.Google Scholar
Sun, G.Z., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526532.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryc, L. (2008). Self-focusing effects in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379387.Google Scholar
Tzeng, K.C. & Mori, W.B. (1998). Suppression of electron ponderomotive blowout and relativistic self-focusing by the occurence of Raman scattering and plasma heating. Phys. Rev. Lett. 81, 104107.Google Scholar
Wagner, R., Chen, S.Y., Maksimuchuk, A. & Umstadter, D. (1997). Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett. 78, 31253128.Google Scholar
Wang, N.Q. (1990). Chaotic behaviour in an electron-beam plasma. Phys. Lett. A 145, 2932.Google Scholar
Yu, C., Wei, Y., Chun, W.H., Han, X. & Wei, T.Y. (2007). Intense laser beam guiding in self-induced electron cavitation channel in underdense plasmas. Chin. Phys. Soc. 16, 456462.Google Scholar
Yu, W., Yu, M.Y., Zhang, J. & Xu, Z. (1998). Harmonic generation by relativistic electrons during irradiance of a solid target by a short-pulse ultraintense laser. Phys. Rev. E 57, 25312534.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Relativistic and ponderomotive effects on evolution of laser beam in a non-uniform plasma channel
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Relativistic and ponderomotive effects on evolution of laser beam in a non-uniform plasma channel
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Relativistic and ponderomotive effects on evolution of laser beam in a non-uniform plasma channel
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *