Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-7jw6s Total loading time: 0.516 Render date: 2022-12-01T21:32:11.974Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

RAPCAL code: A flexible package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature

Published online by Cambridge University Press:  22 July 2008

R. Rodríguez*
Affiliation:
Physics Department, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain Nuclear Fusion Institute-Denim, Polytechnic University of Madrid, Madrid, Spain
R. Florido
Affiliation:
Physics Department, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain Nuclear Fusion Institute-Denim, Polytechnic University of Madrid, Madrid, Spain
J.M. Gil
Affiliation:
Physics Department, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain Nuclear Fusion Institute-Denim, Polytechnic University of Madrid, Madrid, Spain
J.G. Rubiano
Affiliation:
Physics Department, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain Nuclear Fusion Institute-Denim, Polytechnic University of Madrid, Madrid, Spain
P. Martel
Affiliation:
Physics Department, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain Nuclear Fusion Institute-Denim, Polytechnic University of Madrid, Madrid, Spain
E. Mínguez
Affiliation:
Nuclear Fusion Institute-Denim, Polytechnic University of Madrid, Madrid, Spain
*
Address correspondence and reprint requests to: Rafael Rodríguez, Physics Department, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain. E-mail: rrodriguez@dfis.ulpgc.es

Abstract

Radiative properties are fundamental for plasma diagnostics and hydro-simulations. For this reason, there is a high interest in their determination and they are a current topic of investigation both in astrophysics and inertial fusion confinement research. In this work a flexible computation package for calculating radiative properties for low and high Z optically thin and thick plasmas, both under local thermodynamic equilibrium and non-local thermodynamic equilibrium conditions, named RAPCAL is presented. This code has been developed with the aim of providing accurate radiative properties for low and medium Z plasmas within the context of detailed level accounting approach and for heavy elements under the detailed configuration accounting approach. In order to show the capabilities of the code, there are presented calculations of some radiative properties for carbon, aluminum, krypton and xenon plasmas under local thermodynamic and non-local thermodynamic equilibrium conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abadallah, J. Jr., Batani, D., Desai, T.Lucchini, G., Faenov, A., Pikuz, T., Magunov, A. & Narayanan, V. (2007 b). High resolution X-ray emission spectra from picosecond laser irradiated Ge targets. Laser Part. Beams 25, 245252.Google Scholar
Abdallah, J. Jr., Kilcrease, D.P., Magee, N.H., Mazevet, S., Hakel, P. & Sherrill, M. (2007 a). Spectral line strength binning method for opacity calculations. High Energy Density Phys. 3, 309313.CrossRefGoogle Scholar
Abdallah, J. Jr., Zhang, H.L., Fontes, C.J., Kilcrease, D.P. & Archer, B.J. (2001). Model comparisons for high-Z non-LTE steady-state calculations. J. Quant. Spectrosc. Radiat. Trans. 71, 107116.CrossRefGoogle Scholar
Alexiou, S., Calisti, A., Gauthier, P., Klein, L., Leboucher-Dalimier, E., Lee, R.W., Stamm, R. & Talin, B. (1997). Aspects of plasma spectroscopy: recent advances. J. Quant. Spectrosc. Radiat. Trans. 58, 399413.CrossRefGoogle Scholar
Bar-Shalom, A., Klapisc, H.M. & Oreg, J. (2001). HULLAC, an integrated computer package for atomic processes in plasmas. J. Quant. Spectrosc. Radiat. Trans. 71, 169188.CrossRefGoogle Scholar
Bar-Shalom, A., Klapisch, M. & Oreg, J. (1988). Electron collision excitations in complex spectra of ionized heavy atoms. Phys. Rev. A. 38, 17731784.CrossRefGoogle ScholarPubMed
Bar-Shalom, A., Oreg, J. & Klapisch, M. (1997). Non-LTE superconfiguration collisional radiative model. J. Quant. Spectrosc. Radiat. Trans. 58, 427439.CrossRefGoogle Scholar
Bar-Shalom, A., Oreg, J., Goldstein, W.H., Shvarts, D. & Zigler, A. (1989). Super-transition-arrays: A model for the spectral analysis of hot dense plasmas. Phys. Rev. A. 40, 31833193.CrossRefGoogle Scholar
Bauche, J., Bauche-Arnoult, C. & Klapisch, M. (1987). Transition arrays in the spectra of ionized ions. Adv. At. Mol. Phys. 23, 131195.CrossRefGoogle Scholar
Bauche, J., Bauche-Arnoult, C. & Peyrusse, O. (2006). Effective temperatures in hot dense plasmas. J. Quant. Spectrosc. Radiat. Trans. 99, 5566.CrossRefGoogle Scholar
Bauche-Arnoult, C., Bauche, J. & Klapisch, M. (1985). Variance of the distributions of energy levels and of the transition arrays in atomic spectra. III. Case of spin-orbit-split arrays. Phys. Rev. A 31, 22482259.CrossRefGoogle ScholarPubMed
Bowen, C. (2001). NLTE emissivities via ionisation temperature. J. Quant. Spectrosc. Radiat. Trans. 71, 201214.CrossRefGoogle Scholar
Bowen, C., Decoster, A., Fontes, C.J., Fournier, K.B., Peyrusse, O. & Ralchenko, Yv. (2003). Review of the NLTE emissivities code comparison virtual workshop. J. Quant. Spectrosc. Radiat. Trans. 81, 7184.CrossRefGoogle Scholar
Bowen, C., Lee, R.W. & Ralchenko, Y. (2006). Comparing plasma population kinetics codes: Review of the NLTE-3 Kinetics Workshop. J. Quant. Spectrosc. Radiat, Trans. 99, 102119.CrossRefGoogle Scholar
Chenais-Popovics, C., Malka, V., Gauthier, J.C., Gary, S., Peyrusse, O., Rabec-Le Gloahec, M., Matsushima, I., Bauche-Arnoult, C., Bachelier, A. & Bauche, J. (2002). X-ray emission of a xenon gas jet plasma diagnosed with Thomson scattering. Phys. Rev. E. 65, 0464181.CrossRefGoogle Scholar
Chung, H.K., Chen, M.H. & Lee, R.W. (2007). Extension of atomic configuration sets of the non-LTE model in the application to the Kα diagnostics of hot dense matter. High Energy Density Phys. 3, 5764.CrossRefGoogle Scholar
Chung, H.K., Chen, M.H., Morgan, W.L., Ralchenko, Y. & Lee, R.W. (2005). FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Density Phys. 1, 312.CrossRefGoogle Scholar
Chung, H.K., Fournier, K.B. & Lee, R.W. (2006). Non-LTE kinetics modelling of krypton ions: Calculation of radiative cooling coefficients. High Energy Density Phys. 2, 715.CrossRefGoogle Scholar
Colgan, J., Fontes, C.J. & Abdallah, J. Jr. (2006). Collisional-radiative studies of carbon plasmas. High Energy Density Phys. 2, 9096.CrossRefGoogle Scholar
Cowan, R.D. (1981). The Theory of Ttomic Structure. Berkeley, CA: University of California Press.Google Scholar
Csanak, G. & Daughton, W. (2004). The application of the single-channel random phase approximation to radiative properties of dense He and Li plasmas. J. Quant. Spectrosc. Radiat. Trans. 83, 8392.CrossRefGoogle Scholar
Dimitrijevic, M.S, & Konjevic, N. (1980). Stark widths of doubly-ionized and triply-ionized atom lines. J. Quant. Spectrosc. Radiat. Trans. 24, 451459.CrossRefGoogle Scholar
Dimitrijevic, M.S., Konjevic, N. (1987). Simple estimates for Stark-broadening of ion lines in stellar plasmas. Astron. Astrophys. 172, 345349.Google Scholar
Faussurier, G., Blancard, C. & Decoster, A. (1997). Statistical mechanics of highly charged ions in local thermodynamic equilibrium. Phys. Rev. E. 56, 34743487.CrossRefGoogle Scholar
Filevich, J., Grava, J., Purvis, M., Marconi, M.C., Rocca, J.J., Nilsen, J., Dunn, J. & Johnson, W.R. (2007). Multiply ionized carbon plasmas with index of refraction greater than one. Laser Part. Beams. 25, 4751.CrossRefGoogle Scholar
Florido, R. (2007). ABAKO. Un modelo para el estudio de la cinética de poblaciones y propiedades radiativas de plasmas bajo condiciones de no-equilibrio (A model for the study of population kinetics and radiative properties of plasmas under non-equilibrium conditions). PhD Thesis. Las Palmas: Gran Canaria: University of Las Palmas de Gran Canaria.Google Scholar
Florido, R., Gil, J.M., Rodriguez, R., Rubiano, J.G., Martel, P. & Mínguez, E. (2005). Using sparse matrices techniques and iterative solver in the calculation of level populations for NLTE plasmas. EPS Plasma Phys. 29C, P-5.124.Google Scholar
Florido, R., Gil, J.M., Rodriguez, R., Rubiano, J.G., Martel, P. & Minguez, E. (2006). Line photon transport in a non-homogeneous plasma using coupling coefficients. J. Phys. IV. 133, 993996.Google Scholar
Florido, R., Rodriguez, R., Gil, J.M., Rubiano, J.G., Martel, P., Suárez, D., Mendoza, M. & Mínguez, E. (2008). ABAKO: A new code for population kinetics and radiative properties of plasmas under NLTE conditions. J. Phys. 112, 04208.Google Scholar
Fontes, C.J., Colgan, J., Zhang, H.L. & Abdallah, J. Jr. (2006). Large-scale kinetics modelling of non-LTE plasmas. J. Quant. Spectrosc. Radia.t Trans. 99, 175185.CrossRefGoogle Scholar
Fournier, K.B., May, M.J., Pacella, D., Finkenthel, M., Gregory, B.C. & Goldstein, W.H. (2000). Calculation of the radiative cooling coefficient for krypton in a low density plasma. Nucl. Fusion. 40, 847863.CrossRefGoogle Scholar
Gil, J.M., Martel, P., Minguez, E., Rubiano, J.G., Rodríguez, R. & Ruano, F.H. (2002). An effective analytical potential including plasma effects. J. Quant. Spectrosc. Radiat. Trans. 75, 539557.CrossRefGoogle Scholar
Gil, J.M., Rodriguez, R., Florido, R., Rubiano, J.G., Martel, P. & Minguez, E. (2008). Determination of corona, LTE and NLTE regimes of optically thin carbon plasmas. Laser Part. Beams 26, 2131.CrossRefGoogle Scholar
Griem, H.R. (1963). Validity of local thermodynamic equilibrium in plasma spectroscopy. Phys. Rev. 131, 11701176.CrossRefGoogle Scholar
Griem, H.R. (1974). Spectra Line Broadening. New York: New York Academic.Google Scholar
Griem, H.R. (1997). Principles of Plasma Spectroscopy. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Gu, M.F. (2003). Indirect X-ray line-formation processes in iron L-shell ions. Astrophys. J. 582, 12411250.CrossRefGoogle Scholar
Hakel, P., Sherrill, M.E., Mazevet, S., Abdallah, J. Jr., Colgan, J., Kilkrease, D.P., Magee, N.H., Fontes, C.J. & Zhang, H.L. (2006). The new Los Alamos opacity code ATOMIC. J. Quant. Spectrosc. Radiat. Trans. 99, 265271.CrossRefGoogle Scholar
Hansen, S.B., Bauche, J., Bauche-Arnoult, C. & Gu, M.F. (2007). Hybrid atomic models for spectroscopic plasma diagnostics. High Energy Dens. Phys. 3, 109114.CrossRefGoogle Scholar
Iglesias, C.A., Chen, M.H., Sonnad, V. & Wilson, B.G. (2003). A new detailed accounting opacity code for mid-Z elements: TOPAZ. J. Quant. Spectrosc. Radiat. Trans. 81, 227236.CrossRefGoogle Scholar
Karzas, W.J. & Latter, R. (1961). Electron radiative transitions in a Coulomb field. Astrophys J. 6, 167212.CrossRefGoogle Scholar
Keskinen, M.J. & Schmitt, A. (2007). Non-local heat flow in high-Z laser plasmas with radiation transport. Laser Part. Beams 25, 333337.CrossRefGoogle Scholar
Klapisch, M. (1971). A program for atomic wavefunction computations by the parametric potential method. Comput. Phys. Commun. 2, 239260.CrossRefGoogle Scholar
Kohn, W. & Sham, L.J. (1965). Self-consistent equations including exchange and correlations effects. Phys. Rev. A. 140, 11331965.CrossRefGoogle Scholar
Kramers, H.A. (1923). On the theory of X-ray absorption and of the continuous X-ray spectrum. Philos. Mag. 46, 836871.CrossRefGoogle Scholar
Liberman, D.A., Cromer, D.T. & Weber, J.T. (1971). Relativistic self-consistent field program for atoms and ions. Comput. Phys. Commun. 2, 107113.CrossRefGoogle Scholar
Lomonosov, I.V. (2007). Multi-phase equation of state for aluminium. Laser Part. Beams 25, 567–84.CrossRefGoogle Scholar
Lotz, W. (1968). Electron-impact ionization cross sections and ionization coefficients for atoms and ions from hydrogen to calcium. Z. Phys. 216, 241247.CrossRefGoogle Scholar
Magee, N.H., Abdallah, J. Jr. & Clark, R.E.H. (1995). Atomic structure calculations and new Los Alamos astrophysical opacities. Astron. Astrophys. 78, 5156.Google Scholar
Mancini, R.C., Joyce, R.F. & Hooper, C.F. (1987). Escape factors for Stark-broadened line-profiles. J. Phys. B: At. Mol. Phys. 20, 29752987.CrossRefGoogle Scholar
Mandrekas, J., Stacey, W.M. & Kelly, F. (1996). Impurity seeded radiative power exhaust solutions for ITER. Nucl. Fusion. 36, 917926.CrossRefGoogle Scholar
Martel, P., Doreste, L., Mínguez, E. & Gil, J.M. (1995). A parametric potential for ions from helium to iron isoelectronic sequences. J. Quant. Spectrosc. Radiat. Trans. 54, 621636.CrossRefGoogle Scholar
Martel, P., Rubiano, J.G., Gil, J.M, Doreste, L. & Minguez, E. (1998). Analytical expressions for the n-order momenta of charge distribution for ions. J. Quant. Spectrosc. Radiat. Trans. 60, 623633.CrossRefGoogle Scholar
Mazevet, S. & Abdallah, J. Jr. (2006). Mixed UTA and detailed treatment for mid-Z opacity and spectral calculations. J. Phys. B: At. Mol. Phys. 39, 34193429.CrossRefGoogle Scholar
Mihalas, D. (1978). Stellar Atmospheres. San Francisco: Freeman.Google Scholar
Mínguez, E. (1993). Radiation transport in ICF targets. In Nuclear Fusion by Inertial Confinement: A Comprehensive Treatise (Velarde, G., Ronen, Y. & Martínez-Val, J.M., eds), pp. 198209. Boca Raton, FL: CRC Press.Google Scholar
Mínguez, E., Gil, J.M., Martel, P., Rubiano, J.G., Rodriguez, R. & Doreste, L. (1998). Developments and comparison of two DENIM opacity models. Nuc.l Instr. Meth. Phys. Res. A 415, 539542.CrossRefGoogle Scholar
Mínguez, E., Rodriguez, R., Gil, J.M., Sauvan, P., Florido, R., Rubiano, J.G., Martel, P. & Mancini, R. (2005). Opacities and line transfer in high density plasma. Laser Part. Beams 23, 199203.CrossRefGoogle Scholar
Nikiforov, A.F., Novikov, V.G. & Uvarov, V.B. (2000). Quantum-Statistical Models of Hot Dense Matter And Methods for Computation Opacity fnd Equation of State. Moscow: Fizmattlit.Google Scholar
Nikiforov, A.F., Novikov, V.G., Uvarov, V.B., Dragalov, V.V. & Solomyannaya, A.D. (1995). THERMOS opacity code. Proc. Third International Opacity Workshop Code Comparison Study. Garching, Germany: Max-Planck Institute for Quantenoptik.Google Scholar
Oreg, J., Goldstein, W.H. & Klapisch, M. (1991). Autoinization and radiationless electron capture in complex spectra. Phys. Rev. A. 44, 17501758.CrossRefGoogle ScholarPubMed
Orlov, N.Y., Gus'kov, S.Y., Pikuz, S.A., Rozanov, V.B., Shelkovenko, T.A., Zmitrenko, N.V. & Hammer, D.A. (2007). Theoretical and experimental studies of the radiative properties of hot dense matter for optimizing soft X-ray sources. Laser Part. Beams 25, 415–23.CrossRefGoogle Scholar
Peyrusse, O. (2000). A superconfiguration model for broadband spectroscopy of non-LTE plasmas. J. Phys. B: At. Mol. Phys. 33, 43034322.CrossRefGoogle Scholar
Peyrusse, O. (2001). On the superconfiguration approach to model NLTE plasma emission. J. Quant. Spectrosc. Radiat. Trans. 71, 571579.CrossRefGoogle Scholar
Peyrusse, O. (2004). Complex atom physics and radiative properties of hot dense plasmas. Nucl. Fusion. 44, S202207.CrossRefGoogle Scholar
Peyrusse, O., Bauche-Arnoult, C. & Bauche, J. (2006). Effective superconfiguration temperature and the radiative properties of nonlocal thermodynamical equilibrium hot dense plasma. Phys. Plasmas. 12, 0633021.Google Scholar
Post, D.E. (1995). A review of recent developments in atomic processes for divertors and edge plasmas. J. Nucl. Mater. 222, 143157.CrossRefGoogle Scholar
Rajagopal, A.K. (1980). Theory of inhomogeneous electron systems: Spin-density-functional formalism. Advan. Chem. Phys. 41, 59193.Google Scholar
Rodriguez, R., Gil, J.M. & Florido, R. (2007). Screening effects on the atomic magnitudes of non-hydrogenic ions in strongly coupled plasmas. Phys. Scr. 76, 418427.CrossRefGoogle Scholar
Rodriguez, R., Gil, J.M., Florido, R, Rubiano, J.G., Martel, P. & Mínguez, E. (2006). Code to calculate optical properties for plasmas in a wide range of densities. J. Phys. IV 133, 981984.Google Scholar
Rodriguez, R., Rubiano, J.G., Gil, J.M., Martel, P., Mínguez, E. & Florido, R. (2002). Development of an analytical potential to include excited ions. J. Quant. Spectrosc. Radiat. Trans. 75, 723739.CrossRefGoogle Scholar
Rogers, F.J., Iglesias, C.A. & Wilson, B.G. (1992). Radiative atomic Rosseland mean opacity tables. Astrophys. J. Suppl. Ser. 79, 507568.CrossRefGoogle Scholar
Rose, S.J. (1992). Calculation of the radiative opacity of laser-produced plasma. J. Phys. B: At. Mol. Opt. Phys. 25, 16671681.CrossRefGoogle Scholar
Rubiano, J.G., Florido, R., Bowen, C., Lee, R.W. & Ralchenko., Y. (2007). Review of the 4th NLTE code comparison workshop. High Energy Density Phys. 3, 225232.CrossRefGoogle Scholar
Rubiano, J.G., Florido, R., Rodriguez, R., Gil, J.M., Martel, P. & Mínguez, E. (2004). Calculation of the radiative opacity of laser-produced plasmas using a new relativistic-screened hydrogenic model. J. Quant. Spectrosc. Radiat. Trans. 83, 159182.CrossRefGoogle Scholar
Rutten, R.J. (1995). Radiative transfer in stellar atmospheres. Sterrekundig Instituut: Utretch.Google Scholar
Seaton, M.J. (1990). Atomic data for opacity calculations 13. Line-profiles for transitions in hydrogenic ions. J. Phys. B: At. Mol. Opt. Phys. 23, 32553296.CrossRefGoogle Scholar
Serduke, F.J.D., Mínguez, E., Davidson, S.J. & Iglesias, C.A. (2000). WorkOp-IV summary: Lessons from iron opacities. J. Quant. Spectrosc. Radiat. Trans. 65, 527541.CrossRefGoogle Scholar
Skinner, C.H. & Federici, G. (2006). Is carbon a realistic choice for ITER's divertor?. Phys. Scr. T124, 1822.CrossRefGoogle Scholar
Stewart, J.C. & Pyatt, K.D. Jr. (1966). Lowering of ionization potentials in plasmas. Astrophys. J. 144, 12031211.CrossRefGoogle Scholar
Van Regemorter, H.V. (1962). Rate of collisional excitation in stellar atmospheres. Astrophys. J. 136, 906915.CrossRefGoogle Scholar
Winhart, G., Eidmann, K., Iglesias, C.A., Bar-Shalom, A., Mínguez, E., Rickert, A. & Rose, S.J. (1995). XUV opacity measurements and comparison with models. J. Quant. Spectrosc. Radiat. Trans. 54, 437446.CrossRefGoogle Scholar
Wu, Z., Pang, J. & Yan, J. (2006). Opacity calculations for high-Z plasmas in non-local thermodynamic equilibrium. J. Quant. Spectrosc. Radiat. Trans. 102, 402408.CrossRefGoogle Scholar
Yuan, J. & Moses, G.A. (2006). YAC: a code using the detailed accounting model for all-Z elements. J. Quant. Spectrosc. Radiat. Trans. 99, 697711.CrossRefGoogle Scholar
Yuan, J., Haynes, D.A., Peterson, R.R. & Moses, G.A. (2003). Flexible database-driven opacity and spectrum calculations. J. Quant. Spectrosc. Radiat. Trans. 81, 513520.CrossRefGoogle Scholar
Zeng, J. & Yuan, J. (2002). Detailed-term-accounting approximation calculations of the radiative opacity of aluminum plasma: a systematic study. Phys. Rev. E 66, 0164011.CrossRefGoogle Scholar
Zeng, J., Yuan, J. & Lu, Q. (2001 a). Photoionization of O III low-lying states: autoionization resonance energies and widths of some 1s-2p excited states. J. Phys. B: At. Mol. Opt. Phys. 34, 28232833.CrossRefGoogle Scholar
Zeng, J., Yuan, J. & Lu, Q. (2001 b). Detailed-term-accounting-approximation calculations of the radiative opacity of laser-produced Al plasmas. Phys. Rev. E. 64, 0664121.CrossRefGoogle ScholarPubMed

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

RAPCAL code: A flexible package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

RAPCAL code: A flexible package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

RAPCAL code: A flexible package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *