Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-18T11:50:55.618Z Has data issue: false hasContentIssue false

Numerical study of an X-ray-driven carbon foil

Published online by Cambridge University Press:  09 March 2009

N. W. Kaiser
Affiliation:
Max-Planck-Institut für Quantenoptik, Postfach 1513, D-8046 Garching b. München, Germany
J. Meyer-Ter-Vehn
Affiliation:
Max-Planck-Institut für Quantenoptik, Postfach 1513, D-8046 Garching b. München, Germany
R. Ramis
Affiliation:
E.T.S.I. Aeronauticos, Universidad Politecnica de Madrid, E-28006 Madrid, Spain

Abstract

The radiation hydrodynamics of a 125-μm thin carbon layer illuminated by thermal radiation of Trad = 200 eV temperature is studied within a multigroup radiation model. Whereas a major part of the incident photons deposit their energy by K-shell absorption close to the surface, soft photons below the K edge and hard photons (hv > 800 eV) penetrate deeper into the material and drive a heat wave with a sharp front. A nonablated mass fraction of 20% is accelerated with a hydrodynamic efficiency of 11%. About half of the incident radiation flux is reemitted by the heated carbon plasma. The heat front trajectory can be reproduced by the analytical heating wave model when effective opacity parameters corresponding to the most penetrating components are used.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Duston, D. et al. 1983 Phys. Rev. A 27, 1441.CrossRefGoogle Scholar
Eidmann, K. 1989 In Course and Workshop of the International School of Plasma Physics Piero Caldirola “Inertial Confinement Fusion,” Varenna, September 1988, Caruso, A. & Sindoni, E. eds. (Editrice Compositori, Bologna), p. 65.Google Scholar
Fabbro, R., Max, , & C., Fabre, E. 1984 Phys. Fluids 28, 1436.Google Scholar
Kaiser, N., Meyer-Ter-Vehn, J. & Sigel, R. 1989 Phys. Fluids B 1, 1747.CrossRefGoogle Scholar
Ramis, R., Schmalz, R. & Meyer-Ter-Vehn, J. 1988 Comput. Phys. Commun. 49, 475.CrossRefGoogle Scholar
Metzler, N. & Meyer-Ter-Vehn, J. 1984 Laser Part. Beams 2, 27.CrossRefGoogle Scholar
Salzmann, D., Szichman, H. & Krumbein, A. 1987 Phys. Fluids 30, 515.CrossRefGoogle Scholar
Schmalz, R. F., Meyer-Ter-Vehn, J. & Ramis, R. 1986 Phys. Rev. A 34, 2177.CrossRefGoogle Scholar
Storm, E. et al. 1988 Lawrence Livermore National Laboratory Report No. UCRL-99383.Google Scholar
Zel'dovich, Ya. B. & Raizer, Yu. P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York), Vol. 1, Chap. 5.Google Scholar