Hostname: page-component-6b989bf9dc-llglr Total loading time: 0 Render date: 2024-04-14T22:05:15.315Z Has data issue: false hasContentIssue false

Long term stabilization of the beam combination laser with a phase controlled stimulated Brillouin scattering phase conjugation mirrors for the laser fusion driver

Published online by Cambridge University Press:  28 November 2006

HONG JIN KONG
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea
JIN WOO YOON
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea
JAE SUNG SHIN
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea
DU HYUN BEAK
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea
BONG JU LEE
Affiliation:
Research and Development Division, National Fusion Research Center, Daejeon, Korea

Abstract

Laser fusion requires very high energy/power output with high repetition rate over 10 Hz, which is very difficult with the current laser technologies. However, the recent research work on the phase controlling of the stimulated Brillouin scattering wave enables the realization of this kind of laser fusion driver. The recent progress of controlling the phase has been successfully demonstrated by the self-generated density modulation method proposed by one of the authors (Kong). Nevertheless, it showed a long-term fluctuation of the phase because of the long-term fluctuation of the density of the SBS medium due to the thermal fluctuation. This long-term thermal fluctuation is inevitable a fact in nature. The authors used a specially designed stabilizing system for the phase controlling system, which has the PZT control of the mirror for phase controlling SBS-PCM (the so-called feedback mirror). This system stabilizes the phase controlling system very well for more than 1 h. This technique will help the laser fusion driver to be realized sooner than expected. In addition, we propose a similar scheme to be applied to the ultra-fast pulse laser system, which must operate at high repetition rate for the laser fusion energy power plant.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-Ter-Vehn, J. (2004). The Physics of Inertial Fusion. New York: Oxford University Press.CrossRef
Dane, C.B., Neuman, W.A. & Hackel, L.A. (1992). Pulse-shape dependence of stimulated-Brillouin-scattering phase-conjugation fidelity for high input energies. Opt. Lett. 17, 1271.CrossRefGoogle Scholar
Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, I., Fell, B., Frackiewicz, A.J., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C., Shaikh, W., Winstone, T.B., Wyatt, R.W.W. & Wyborn, B.E. (2005). Vulcan petawatt: Design, operation and interactions at 5 × 1020 Wcm−2. Laser Part. Beams 23, 8793.CrossRefGoogle Scholar
Gonzales, M., Stehle, C., Audit, E., Busquet, M., Rus, B., Thais, F., Acef, O., Barroso, P., Bar-Shalom, A., Baudin, D., Kozlova, M., Lery, T., Madouri, A., Mocek, T. & Polan, J. (2006). Astrophysical radiative shocks: from modelling to laboratory astrophysics. Laser Part. Beams 24 (in press).CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, NA., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182CrossRefGoogle Scholar
Kong, H.J., Baek, D.H., Lee, S.K. & Lee, D.W. (2005a). Waveform preservation of the backscattered stimulated Brillouin scattering wave by using a prepulse injection. Opt. Lett. 30, 3401.Google Scholar
Kong, H.J., Lee, J.Y., Shin, Y.S., Byun, J.O., Park, H.S. & Kim, H. (1997). Beam recombination characteristics in array laser amplification using stimulated Brillouin scattering phase conjugation. Opt. Rev. 4, 277.CrossRefGoogle Scholar
Kong, H.J., Lee, S.K., Kim, J.J., Kang, Y.G. & Kim, H. (2001). A cross type double pass laser amplifier with two symmetric phase conjugation mirrors using stimulated Brillouin scattering. Chinese J. Lasers B10, I5I9.Google Scholar
Kong, H.J., Lee, S.K. & Lee, D.W. (2005b). Beam combined laser fusion driver with high power and high repetition rate using stimulated Brillouin scattering phase conjugation mirrors and self-phase-locking. Laser Part. Beams 23, 55.Google Scholar
Kong, H.J., Lee, S.K. & Lee, D.W. (2005c). Highly repetitive high energy/power beam combination laser: IFE laser driver using independent phase control of stimulated Brillouin scattering phase conjugate mirrors and pre-pulse technique. Laser Part. Beams 23, 107.Google Scholar
Kong, H.J., Lee, S.K., Lee, D.W. & Guo, H. (2005d). Phase control of a stimulated Brillouin scattering phase conjugate mirror. Appl. Phys. Lett. 86, 051111.Google Scholar
Lee, S.K., Kong, H.J. & Nakatsuka, M. (2005a). Great improvement of phase control of the entirely independent stimulated Brillouin scattering phase conjugate mirrors by balancing the pump energies. Appl. Phys. Lett. 87, 161109.Google Scholar
Lee, S.K., Lee, D.W. & Kong, H.J. (2005b). Stimulated Brillouin scattering by multi-mode pump with a large number of longitudinal modes. JKPS 46, 443.Google Scholar
Nakai, S. & Mima, K. (2004). Laser driven inertial fusion energy: Present and prospective. Rpt. Prog. Phys. 67, 321.CrossRefGoogle Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.J., Kuehl, T., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23, 385389.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.Google Scholar
Shen, Y.R. (1984). The Principles of Nonlinear Optics. New York: John Wiley & Sons.
Tahir, N.A., Udrea, S., Deutsch, C., Fortov, V.E., Grandjouan, G., Gryaznov, V., Hoffmann, D.H.H., Hulsmann, P., Kirk, M., Lomonosov, I.V., Piriz, A.R., Shutov, A., Spiller, P., Temporal, M. & Varentsov, D. (2004). Target heating in high-energy-density matter experiments at the proposed GSI FAIR facility: Non-linear bunch rotation in SIS 100 and optimization of spot size and pulse length. Laser Part. Beams 22, 485493CrossRefGoogle Scholar
Yoshida, H., Kmetik, V., Fujita, H., Nakatsuka, M., Yamanaka, T. & Yoshida, K. (1997). Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror. Appl. Opt. 36, 3739.CrossRefGoogle Scholar
Zel'dovich, B.Ya., Popovichev, V.I., Ragul'skii, V.V. & Faizyllov, F.S. (1972). Connection between the wave fronts of the reflected and exciting light in stimulated Mandel'shtam-Brillouin scattering. Soviet Phys. JETP Lett. 15, 109.Google Scholar