Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-27T04:35:51.801Z Has data issue: false hasContentIssue false

Laser produced plasma as an ion source for heavy ion inertial fusion

Published online by Cambridge University Press:  09 March 2009

L. Z. Barabash
Affiliation:
Institute of Theoretical and Experimental Physics, Moscow, USSR
D. G. Koshkarev
Affiliation:
Institute of Theoretical and Experimental Physics, Moscow, USSR
Yu. I. Lapitskii
Affiliation:
Institute of Theoretical and Experimental Physics, Moscow, USSR
S. V. Latyshev
Affiliation:
Institute of Theoretical and Experimental Physics, Moscow, USSR
A. V. Shumshurov
Affiliation:
Institute of Theoretical and Experimental Physics, Moscow, USSR
Yu. A. Bykovskii
Affiliation:
Engineering Physics Institute, Moscow, USSR
A. A. Golvbev
Affiliation:
Engineering Physics Institute, Moscow, USSR
Yu. P. Kosyrev
Affiliation:
Engineering Physics Institute, Moscow, USSR
K. I. Krechet
Affiliation:
Engineering Physics Institute, Moscow, USSR
R. T. Haydarov
Affiliation:
Engineering Physics Institute, Moscow, USSR

Abstract

The present paper presents experimental results of the transverse and longitudinal phase volume for the expanding multicharged ions in laser produced plasma, created by focusing a CO2-laser (beam) onto a Pb207 target. The total number of Pb207 ions (with Z = 1 or 2 and Z = 6), the ion current duration and amplitude at a distance of 1 m from the laser target within 10−2 steradians are determined. The measured experimental parameters of the laser heavy ion source are compared with the driver requirement for the heavy ion inertial fusion (HIIF) programme.

The phenomena observed in the experiment confirm the results of numerical calculations using a two temperature hydrodynamic programme.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ananin, O. B., Balden, A. M., Beznogikh, Yu. D., Bykovskii, Yu. A., Gorov, A. I., Zinovev, L. P., Kozyrev, Yu. P., Makarov, L. G., Monchinskii, V. A., Novikov, I. K., Peklenkov, V. D., Raspopin, A. M. & Semenyushkin, I. N. 1977 Sov. J. Quant. El. 7, 873.CrossRefGoogle Scholar
Ananin, O. B. et al. 1982 Report of Joint Institute for Nuclear Research, Dubna, pg-82317.Google Scholar
Barabash, L. Z., Bykovskii, Yu. A. et al. 1981 Report Inst. Theor. Exper. Phys. No. 126.Google Scholar
Basova, T. A. 1978 Ph.D. Thesis, Moscow.Google Scholar
Bykovskii, Yu. A., Lagoda, V. B. & Sheroziya, G. A. 1979 JETP Lett. 30, 458.Google Scholar
Hora, H., Kane, E. L. & Hughes, J. L. 1978 J. Appl. Phys. 49, 923.CrossRefGoogle Scholar
Hora, H., Jones, D. A., Kane, E. L. & Luther-Davies, B. 1982 in Laser Acceleration of Particles,AIP Conf. Proceed. No. 91, Channell, P. J. ed. (AIP, New York) p. 112.Google Scholar
Latyshev, S. V. 1982 Report Inst. Theor. Exper. Physics No. 54.Google Scholar
Peacock, R. S. & Pease, R. S. 1969 J. Phys. D2, 1705.Google Scholar
Sessler, A. M. 1982 in Laser Acceleration of Particles,AIP Conf. Proceed. No. 91, P. J. Channell ed. (AIP, New York) p. 10.Google Scholar
Tonon, G. F. 1972 IEEE Transact. Nucl. Sc. NS19, 172.CrossRefGoogle Scholar
Zenkevich, P. R., Imshennik, B. C., Kapchinskii, I. M., Koshkapev, D. G., Shevchenko, B. G. 1981 Report Inst. Theor. Exper. Phys. No. 64.Google Scholar
Zverev, S. A., Kalashnikov, M. P., Lapidevskii, V. K., Mikhailov, Yu. V., Rode, A. B., Sklizkov, G. V., Fedotov, S. I. 1980 Report Phys. Inst. Acad. Sci. USSR, No. 96.Google Scholar