Skip to main content Accessibility help
Hostname: page-component-544b6db54f-2p87r Total loading time: 0.261 Render date: 2021-10-23T02:55:43.505Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI

Published online by Cambridge University Press:  05 December 2005

Technische Universität Darmstadt, Darmstadt, Germany
Technische Universität Darmstadt, Darmstadt, Germany
GSI, Darmstadt, Germany
GSI, Darmstadt, Germany
Technische Universität Darmstadt, Darmstadt, Germany Current address: Ecole Polytechnique, Paris
Technische Universität Darmstadt, Darmstadt, Germany Current address: Sandia National Laboratories, Albuquerque, New Mexico.
GSI, Darmstadt, Germany
Technische Universität Darmstadt, Darmstadt, Germany
Technische Universität Darmstadt, Darmstadt, Germany
Université de Provence et CNRS, Marseille, France
Multicharged Ions Spectra Data Center, VNIIFTRI, Moscow, Russia
Multicharged Ions Spectra Data Center, VNIIFTRI, Moscow, Russia
Weizmann Institute of Science, Rehovot, Israel
Weizmann Institute of Science, Rehovot, Israel
GSI, Darmstadt, Germany
Technische Universität Darmstadt, Darmstadt, Germany GSI, Darmstadt, Germany


High energy heavy ions were generated in laser produced plasma at moderate laser energy, with a large focal spot size of 0.5 mm diameter. The laser beam was provided by the 10 GW GSI-NHELIX laser systems, and the ions were observed spectroscopically in status nascendi with high spatial and spectral resolution. Due to the focal geometry, plasma jet was formed, containing high energy heavy ions. The velocity distribution was measured via an observation of Doppler shifted characteristic transition lines. The observed energy of up to 3 MeV of F-ions deviates by an order of magnitude from the well-known Gitomer (Gitomer et al., 1986) scaling, and agrees with the higher energies of relativistic self focusing.

Workshop on Fast High Density Plasma Blocks Driven By Picosecond Terawatt Lasers
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alexeev, N.N., Alekseev, P.N., Balanutsa, V.N., Bereznitsky, S.L., Evtichovich, V.N., Gorjachev, J.M., Kirillov, A., Koshkarev, D.G., Mescherekov, N.D., Miluachenko, A.V., Nikitin, G.A., Nikolaev, V.I., Okorokov, I.S., Sharkov, B.Y., Schegolev, V.A., Sosnin, D.V., Shumshurov, A., Veselov, M.A., Zavodov, V.P., Zavrazhnov, V.S., Zenkevich, P.R., Zhuravlev, A.S., Mamaev, G.L., Krasnopolsky, V.A., Krylov, S.J., Puchkov, S.N. & Tenjakov, I.E. (2002). Status of the Terawatt Accumulator Accelerator project. Laser Part. Beams 20, 385391.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.Google Scholar
Balakirev, V.A., Karas, I.V., Karas, V.I., Levchenko, V.D. & Bonatici, M. (2004). Charged particle acceleration by an intense wake-field exrefd in plasmas by either laser pulse or relativistic electron bunch. Laser Part. Beams 22, 383392.Google Scholar
Chabot, M., Nectoux, M., Gardes, D., Maynard, G. & Deutsch, C. (1998). Charge state dependence of the stopping power for chlorine ions interacting with a cold gas and a plasma (1.5 MeV/u). Nucl. Instr. Meth. Phys. Res. 415, 571575.Google Scholar
Dietrich, K.G., Hoffmann, D.H.H., Boggasch, E., Jacoby, J., Wahl, H., Elfers, M., Haas, C.R., Dubenkov, V.P. & Golubev, A.A. (1992). Charge state of fast heavy-ions in a hydrogen plasma. Phys. Rev. Lett. 69, 36233626.Google Scholar
Ehler, A.W. (1975). High-energy ions form CO2 laser-produced plasma. J. Appl. Phys. 45, 24642467.Google Scholar
Faenov, A.Y., Pikuz, S.A., Erko, A.I., Bryunetkin, B.A., Dyakin, V.M., Ivanenkov, G.V., Mingaleev, A.R., Pikuz, T.A., Romanova, V.M. & Shelkovenko, T.A. (1994). High-performance x-ray spectroscopic devices for plasma microsources investigations. Phys. Scripta 50, 333338.Google Scholar
Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Kishimoto, Y., Yamakawa, K., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Abdallah, J., Csanak, G., Boldarev, A.S. & Gasilov, V.A. (2004). Generation of X rays and energetic ions from superintense laser irradiation of micron-sized Ar clusters. Laser Part. Beams 22, 215220.Google Scholar
Gabriel, A.H. (1972). Dielectronic satellite spectra for highly-charged helium-like ion lines. Royal Astronomical Soc. 160, 99.Google Scholar
Gitomer, S.J., Jones, R.D., Begay, F., Ehler, A.W., Kephart, J.F. & Kristal, R. (1986). Fast ions and hot-electrons in the laser-plasma interaction. Phys. Fluids 29, 26792688.Google Scholar
Glenzer, S.H. (2000). Thomson scattering in inertial confinement fusion research. Contrib. Plasma Phys. 40, 3645.Google Scholar
Glenzer, S.H., Gregori, G., Lee, R.W., Rogers, F.J., Pollaine, S.W. & Landen, O.L. (2003). Demonstration of spectrally resolved X-ray scattering in dense plasmas. Phys. Rev. Lett. 90 (17).Google Scholar
Glenzer, S.H., Gregori, G., Rogers, F.J., Froula, D.H., Pollaine, S.W., Wallace, R.S. & Landen, O.L. (2003). X-ray scattering from solid density plasmas. Phys. Plasmas 10, 24332441.Google Scholar
Golubev, A., Basko, M., Fertman, A., Kozodaev, A., Mesheryakov, N., Sharkov, B., Vishnevskiy, A., Fortov, V., Kulish, M., Gryaznov, V., Mintsev, V., Golubev, E., Pukhov, A., Smirnov, V., Funk, U., Stoewe, S., Stetter, M., Flierl, H.P., Hoffmann, D.H.H., Jacoby, J. & Iosilevski, I. (1998). Dense plasma diagnostics by fast proton beams. Phys. Rev. E 57, 33633367.Google Scholar
Gregori, G., Glenzer, S.H., Rogers, F.J., Pollaine, S.M., Landen, O.L., Blancard, C., Faussurier, G., Renaudin, P., Kuhlbrodt, S. & Redmer, R. (2004). Electronic structure measurements of dense plasmas. Phys. Plasmas 11, 27542762.Google Scholar
Hasegawa, J., Yokoya, N., Kobayashi, Y., Yoshida, M., Kojima, M., Sasaki, T., Fukuda, H., Ogawa, M., Oguri, Y. & Murakami, T. (2003). Stopping power of dense helium plasma for fast heavy ions. Laser Part. Beams 21, 711.Google Scholar
Haseroth, H. & Hora, H. (1996). Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources. Laser Part. Beams 14, 393438.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hoffmann, D.H.H., Bock, R., Faenov, A.Y., Funk, U., Geissel, M., Neuner, U., Pikuz, T.A., Rosmej, F., Roth, M., Suss, W., Tahir, N. & Tauschwitz, A. (2000). Plasma physics with intense laser and ion beams. Nuc. Instr. Meth. Phys. Res. 161, 918.Google Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy-loss of heavy-ions in a plasma target. Phys. Rev. A 42, 23132321.Google Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Hora, H. (2005). Difference between relativistic petawatt-picosecond laser-plasma interaction and subrelativistic plasma-block generation. Laser Part. Beams 23, 441451.Google Scholar
Jacoby, J., Hoffmann, D.H.H., Laux, W., Muller, R.W., Wahl, H., Weyrich, K., Boggasch, E., Heimrich, B., Stockl, C., Wetzler, H. & Miyamoto, S. (1995). Stopping of heavy-ions in a hydrogen plasma. Phys. Rev. Lett. 74, 15501553.Google Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research programme. Laser Part. Beams 23, 177182.Google Scholar
Khaydarov, R.T., Berdiyorov, G.R., Kunishev, U., Khalmuratov, M., Tojikhonov, M.E. & Kanapathipillai, M. (2005). Investigation of PbMg target characteristics by a laser mass-spectrometer. Laser Part. Beams 23, 521526.Google Scholar
Kojima, M., Mitomo, M., Sasaki, T., Hasegawa, J. & Ogawa, M. (2002). Charge-state distribution and energy loss of 3.2-MeV oxygen ions in laser plasma produced from solid hydrogen. Laser Part. Beams 20, 475478.Google Scholar
Koshkarev, D.G. (2002). Heavy ion driver for fast ignition. Laser Part. Beams 20, 595598.Google Scholar
Magunov, A.I., Faenov, A.Y., Skobelev, I.Y., Pikuz, T.A., Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Normand, D., Stenz, C., Bagnoud, V., Blasco, F., Roche, J.R., Salin, F. & Sharkov, B.Y. (2003). X-ray spectra of fast ions generated from clusters by ultrashort laser pulses. Laser Part. Beams 21, 7379.Google Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399406.Google Scholar
Maynard, G., Deutsch, C., Gardes, D. & Chabot, M. (2002). Energy loss of MeV/n heavy ions in dense hydrogen plasmas. Plasma Sour. Sci. Techn. 11, A131A137.Google Scholar
Mintsev, V., Gryaznov, V., Kulish, M., Filimonov, A., Fortov, V., Sharkov, B., Golubev, A., Fertman, A., Turtikov, V., Vishnevskiy, A., Kozodaev, A., Hoffmann, D.H.H., Funk, U., Stoewe, S., Geisel, M., Jacoby, J., Gardes, D. & Chabot, M. (1999). Stopping power of proton beam in a weakly nonideal xenon plasma. Contr. Plasma Phys. 39, 4548.Google Scholar
Neumayer, P., Seelig, W., Cassou, K., Klisnick, A., Ros, D., Ursescu, D., Kuehl, T., Borneis, S., Gaul, E., Geithner, W., Haefner, C. & Wiewior, P. (2004). Transient collisionally exrefd X-ray laser in nickel-like zirconium pumped with the PHELIX laser facility. Appl. Phys. B-Lasers Opt. 78, 957959.Google Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.-J., Kuehl, Th., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX Laser and First Experiments. Laser Part. Beams 23, 385389.Google Scholar
Ogawa, M., Yoshida, M., Nakamija, M., Hasegawa, J., Fukata, S., Horioka, K. & Oguri, Y. (2003). High-current laser ion source based on low-power laser. Laser Part. Beams 21, 633640.Google Scholar
Osman, F., Hora, H., Cang, Y., Evans, P., Cao, H., Liu, H., He, X.T., Badziak, J., Parys, A.B., Wolowski, J., Woryna, E., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied, J. (2004). Skin depth plasma front interaction mechanism with prepulse suppression to avoid relativistic self focusing for high gain laser fusion. Laser Part. Beams 22, 8388.Google Scholar
Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirekepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser-plasma interactions and their application. Laser Part. Beams 22, 1924.Google Scholar
Penache, D., Niemann, C., Tauschwitz, A., Knobloch, R., Neff, S., Birkner, R., Geissel, M., Hoffmann, D.H.H., Presura, R., Penache, C., Roth, M. & Wahl, H. (2002). Experimental investigation of ion beam transport in laser initiated plasma channels. Laser Part. Beams 20, 559563.Google Scholar
Rafique, M.S., Rahman, M.K., Anwar, M.S., Ashfad, F.M.A. & Siraj, K. (2006). Angular distribution and forward peaking of laser produced plasma ions. Laser Part. Beams 24. In press.Google Scholar
Rosmej, F.B., Hoffmann, D.H.H., Suess, W., Geissel, M., Pirzadeh, P., Roth, M., Seelig, W., Faenov, A.Ya, Skobelev, I.Yu, Magunov, A.I, Pikuz, T.A, Bock, R., Funk, U.N., Neuner, U., Udrea, S., Tauschwitz, A., Tahir, N.A., Sharkov, B.Yu. & Andreev, N.E. (1999). Observation of MeV ions in long-pulse, large-scale laser-produced plasmas. JETP Lett. 70, 270276.Google Scholar
Rosmej, F.B., Renner, O., Krousky, E., Wieser, J., Schollmeier, M., Krasa, J., Laska, L., Kralikova, B., Skala, J., Bodnar, M., Rosmej, O.N. & Hoffmann, D.H.H. (2002a). Space-resolved analysis of highly charged radiating target ions generated by kilojoule laser beams. Laser Part. Beams 20, 555557.Google Scholar
Rosmej, F.B., Hoffmann, D.H.H., Suss, W., Stepanov, A.E., Satov, Y.A., Smakovskii, Y.B., Roerich, V.K., Khomenko, S.V., Makarov, K.N., Starostin, A.N., Faenov, A.Y., Skobelev, I.Y., Magunov, A.I., Geissel, M., Pirzadeh, P., Seelig, W., Pikuz, T.A., Bock, R., Letardi, T., Flora, F., Bollanti, S., Di Lazzaro, P., Reale, A., Scafati, A., Tomassetti, G., Auguste, T., d'Oliveira, P., Hulin, S., Monot, P. & Sharkov, B.Y. (2002b). The generation of fast particles in plasmas created by laser pulses with different wavelengths. J. Exp. Theo. Phys. 94, 6072.Google Scholar
Rosmej, O.N., Wieser, J., Geissel, M., Rosmej, F., Blakevic, A., Jacoby, J., Dewald, E., Roth, M., Brambrinz, E., Weyrich, K., Hoffmann, D.H.H., Pikuz, T.A., Faenov, A.Y., Magunov, A.I., Skobelev, I.Y., Borisenko, N.G., Shevelko, V.P., Golubev, A.A., Fertman, A., Turtikov, V. & Sharkov, B.Y. (2002). X-ray spectromicroscopy of fast heavy ions and target radiation. Nucl. Instr. Meth. Phys. 495, 2939.Google Scholar
Roth, M., Stockl, C., Suss, W., Iwase, O., Gericke, D.O., Bock, R., Hoffmann, D.H.H., Geissel, M. & Seelig, W. (2000). Energy loss of heavy ions in laser-produced plasmas. Europhys. Lett. 50, 2834.Google Scholar
Sharkov, B.Yu. (2002). Guest editors Preface: 14th international heavy ion inertial fusion symposium, and references therein. Laser Part. Beams 20, 367.Google Scholar
Shorokhov, O. & Pukhov, A. (2004). Ion acceleration in overdense plasma by short pulse laser. Laser Part. Beams 22, 175182.Google Scholar
Stepanov, A.E., Volkov, G.S., Zaitsev, V.I., Makarov, K.N., Satov, Yu.A. & Roerich, V.C. (2002). Measurement of temperature evolution for the laser ion source plasma. Laser Part. Beams 20, 613.Google Scholar
Varentsov, D., Tahir, N.A., Lomonosov, I.V., Hoffmann, D.H.H., Wieser, J. & Fortov, V.E. (2003). Energy loss dynamics of an intense uranium beam interacting with solid neon for equation-of-state studies. Europhys. Lett. 64, 5763.Google Scholar
Wilks, S.C. (2005). Energetic proton generation in ultra-intense laser solid interaction and target normal aheath acceleration. Laser Part. Beams 23(4).Google Scholar
Young, B.K.F., Wilson, B.G., Price, D.F. & Stewart, R.E. (1998). Measurement of X-ray emission and thermal transport in near-solid-density plasmas heated by 130 fs laser pulses. Phys. Rev. E 58, 49294936.Google Scholar
Zhidkov, A.G., Sasaki, A., Tajima, T., Auguste, T., D'Oliveira, P., Hulin, S., Monot, P., Faenov, A.Ya., Pikuz, T.A. & Skobelev, I.Yu. (1999). Direct spectroscopic observation of multiple charged ion acceleration by intense femtosecond pulse laser. Phys. Rev. E. 60, 3273.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *