Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ms7nj Total loading time: 0.868 Render date: 2022-08-18T11:03:15.600Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Fast ignition driven by quasi-monoenergetic ions: Optimal ion type and reduction of ignition energies with an ion beam array

Published online by Cambridge University Press:  26 June 2014

J.J. Honrubia*
Affiliation:
ETSI Aeronáuticos, Universidad Politécnica de Madrid, Madrid, Spain
J.C. Fernández
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
B.M. Hegelich
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
M. Murakami
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
C.D. Enriquez
Affiliation:
ETSI Aeronáuticos, Universidad Politécnica de Madrid, Madrid, Spain
*
Address correspondence and reprint requests to: J.J. Honrubia, ETSI Aeronáuticos, Universidad Politécnica de Madrid, Madrid, Spain. E-mail: Javier.honrubia@upm.es

Abstract

Fast ignition of inertial fusion targets driven by quasi-monoenergetic ion beams is investigated by means of numerical simulations. Light and intermediate ions such as lithium, carbon, aluminum and vanadium have been considered. Simulations show that the minimum ignition energies of an ideal configuration of compressed Deuterium-Tritium are almost independent on the ion atomic number. However, they are obtained for increasing ion energies, which scale, approximately, as Z2, where Z is the ion atomic number. Assuming that the ion beam can be focused into 10 µm spots, a new irradiation scheme is proposed to reduce the ignition energies. The combination of intermediate Z ions, such as 5.5 GeV vanadium, and the new irradiation scheme allows a reduction of the number of ions required for ignition by, roughly, three orders of magnitude when compared with the standard proton fast ignition scheme.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albright, B.J., Schmitt, M.J., Fernández, J.C., Cragg, G.E., Tregillis, I., Yin, L. & Hegelich, B.M. (2008). Studies in capsule design for mid-Z io-driven fast ignition. J. Phys.: Conf. Ser. 112, 022029.Google Scholar
Atzeni, S. (1999). Inertial fusion fast ignitor: Igniting pluse parameter window vs. the penetration depth of the heating particles and the density of the precompressed fuel. Phys. Plasmas 6, 3316.CrossRefGoogle Scholar
Atzeni, S., Temporal, M. & Honrubia, J.J. (2002). A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons. Nucl. Fusion 42, L1.CrossRefGoogle Scholar
Bartal, T., Foord, M.E., Bellei, C., Key, M.H., Flippo, K.A., Gaillard, S.A., Offermann, D.T., Patel, P.K., Jarrott, L.C., Higginson, D.P., Roth, M., Otten, A., Kraus, D., Stephens, R.B., Mclean, H.S., Giraldez, E.M., Wei, M.S., Gautier, D.C. & Beg, F.N. (2012). Focusing of short-pulse high-intensity laser-accelerated proton beams. Nat. Phys. 8, 139.CrossRefGoogle Scholar
Baton, S., Koenig, M., Fuchs, J., Benuzzi-Mounaix, A., Guillou, P., Loupias, B., Vinci, T., Gremillet, L., Rousseaux, C., Drouin, M., Lefebvre, E., Dorchies, F., Forument, C., Santos, Santos, J.J., Batani, D., Morace, A., Redaelli, R., Nakatsutsumi, M., Kodama, R., Nishida, A., Ozaki, N., Norimatsu, T., Aglitskiy, Y., Atzeni, S. & Schiavi, A. (2008). Inhibition of fast electron energy deposition due to preplasma filling of cone-attached targets. Phys. Plasmas 15, 042706.CrossRefGoogle Scholar
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2006). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.CrossRefGoogle ScholarPubMed
Brenner, C.M., Robinson, A.P.L., Markey, K., Scott, R.H.H., Gray, R.J., Rosinski, M., Deppert, O., Badziak, J., Batani, D., Davies, J.R., Hassan, S.M., Lancaster, K.L., Li, K., Musgrave, I.O., Norreys, P.A., Pasley, J., Roth, M., Schlenvoigt, H.-P., Spindloe, C., Tatarakis, M., Winstone, T., Wolowski, J., Wyatt, D., Mckenna, P. & Neely, D. (2014). High energy conversion efficiency in laser-proton acceleration by controling laser-energy deposition onto thin foil targets. Appl. Phys. Lett. 104, 081123.CrossRefGoogle Scholar
Debayle, A., Honrubia, J.J., Dhumíeres, E. & Tikhonchuk, V.T. (2010). Divergence of laser-driven relativistic electron beams. Phys. Rev. E 82, 036405.CrossRefGoogle ScholarPubMed
Dunne, M. (2006). A high-power laser fusion facility for Europe. Nature Phys. 2, 2.CrossRefGoogle Scholar
Fernández, J.C., Albright, B.J., Beg, F.N., Foord, M.E., Hegelich, B.M., Honrubia, J.J., Roth, M., Stephens, R.B. & Yin, L. (2014). Fast ignition with laser-driven proton and ion beams. Nucl. Fusion 54, 054006.CrossRefGoogle Scholar
Fernández, J.C., Albright, B.J., Flippo, K.A., Hegelich, B.M., Kwan, T.J., Schmitt, M.J. & Yin, L. (2008). Progress on ion based fast ignition. J. Phys.: Conf. Ser. 112, 022051.Google Scholar
Fernández, J.C., Honrubia, J.J., Albright, B.J., Flippo, K.A., Gautier, D.C., Hegelich, B.M., Schmitt, M.J., Temporal, M. & Yin, L. (2009). Progress and prospects of ion-driven fast ignition. Nucl. Fusion 49, 065004.CrossRefGoogle Scholar
Green, J.S., Ovchinnikov, V.M., Evans, R.G., Akli, K.U., Azechi, H., Beg, F.N., Bellei, C., Freeman, R.R., Habara, H., Heathcote, R., Key, M.H., King, J.A., Lancaster, K.L., Lopes, N.C., Ma, T., Mackinnon, A.J., Markey, K., Mcphee, A., Najmudin, Z., Nilson, P., Onofrei, R., Stephens, R., Takeda, K., Tanaka, K.A., Theobald, W., Tanimoto, T., Waugh, J., Van Woerkom, L., Woolsey, N.C., Zepf, M., Davies, J.R. & Norreys, P.A. (2008). Effect of laser intensity on fast-electron-beam divergence in solid-density plasma. Phys. Rev. Lett. 100, 015003.CrossRefGoogle Scholar
Harres, K., Alber, I., Tauschwitz, A., Bagnoud, V., Daido, H., Günter, M., Nürnberg, F., Otten, A., Schollmeier, M., Schütrumpf, J., Tampo, M. & Roth, M. (2010). Bean collimation and transport of quasineutral laser-accelerated protons by a solenoid field. Phys. Plasmas 17, 023107.CrossRefGoogle Scholar
Hegelich, B.M., Jung, D., Albright, B.J., Fernandez, J.C., Gautier, D.C., Huang, C., Kwan, T.J., Letzring, S., Palaniyappan, S., Shah, R.C., Wu, H.-C., Yin, L., Henig, A., Hörlein, R., Kiefer, D., Schreiber, J., Yan, X.Q., Tajima, T., Habs, D., Dromey, B. & Honrubia, J.J. (2011). Experimental demonstration of particle energy, conversion efficiency and spectral shape required for ion-based fast ignition. Nucl. Fusion 51, 083011.CrossRefGoogle Scholar
Hegelich, B.M., Pomerantz, I., Yin, L., Wu, H.C., Jung, D., Albright, B.J., Gautier, D.C., Letzring, S., Palaniyappan, S., Shah, R., Allinger, K., Hörlein, R., Schreiber, J., Habs, D., Blakeney, J., Dyer, G., Fuller, L., Gaul, E., Mccary, E., Meadows, A.R., Wang, C., Ditmire, T. & Fernandez, J.C. (2013). Laser-driven ion acceleration from relativisticall transparent nanotargets. New J. Phys. 15, 085015.CrossRefGoogle Scholar
Hofmann, I., Meyer-Ter-Vehn, J., Yan, X., Orzhekhovskaya, A. & Yaramyshev, S. (2011). Collection and focusing of laser accelerated ion beams for therapy applications. Phys. Rev. St. Accel. Beams 14, 031304.CrossRefGoogle Scholar
Honrubia, J.J. (1993 a). A syntheticall accelerated scheme for radiative transfer calculations. J. Quant. Spectrosc. Radiat. Transf. 49, 491.CrossRefGoogle Scholar
Honrubia, J.J. (1993 b). Charged Particle Transport in Fusion by Inertial Confinement (Velarde, G., Ronen, Y. And Martínez-Val, J.M., Eds.). Boca Raton: CRC Press.Google Scholar
Honrubia, J.J., Alfonsin, C., Alonso, L., Perez, B. & Cerrada, J.A. (2006). Simulation of heating of solid targets by fast electrons. Laser Part. Beams 24, 217.CrossRefGoogle Scholar
Honrubia, J.J., Enriquez, C.D., Fernandez, J.C. & Hegelich, B.M. (2013). Fast ignition by quasimonoenergetic ion beams. EPJ Web of Conferences 59, 03013.CrossRefGoogle Scholar
Honrubia, J.J., Fernández, J.C., Temporal, M., Hegelich, B.M. & Meyer-Ter-Vehn, J. (2009). Fast ignition of inertial fusion targets by laser-driven carbon beams. Phys. Plasmas 16, 102701.CrossRefGoogle Scholar
Huang, C.-K., Albright, B.J., Yin, L., Wu, H.-C., Bowers, K.J., Hegelich, B.M. & Fernández, J.C. (2011 a). Improving beam spectral and spatial quality by double-foil target in laser ion acceleration. Phys. Rev. St. Accel. Beams 14 031301.CrossRefGoogle Scholar
Huang, C.-K., Albright, B.J., Yin, L., Wu, H.-C., Bowers, K.J., Hegelich, B.M. & Fernández, J.C. (2011 b). A double-foil target for improving beam quality in laser ion acceleration with thin foils. Phys. Plasmas 18, 056707.CrossRefGoogle Scholar
Jung, D, Albright, B.J., Yin, L., Gautier, D.C., Shah, R., Palaniyappan, S., Letzring, S., Dromey, B., Wu, H.-C., Shimada, T., Johnson, R.P., Roth, M., Fernández, J.C., Habs, D. & Hegelich, B.M. (2013). Beam profiles of proton and carbon ions in the relativistic transparency regime. New J. Phys. 15, 123035.CrossRefGoogle Scholar
Jung, D., Yin, L., Albright, B.J., Gautier, D.C., Hörlein, R., Kiefer, D., Henig, A., Johnson, R., Letzring, S., Palaniyappan, S., Shah, R., Shimada, T., Yan, X.Q., Bowers, K.J., Tajima, T., Fernández, J.C., Habs, D. & Hegelich, B.M. (2011). Monoenergetic ion beam generation by riving ion solitary waves with circularly polarized laser light. Phys. Rev. Lett. 107, 115002.CrossRefGoogle Scholar
Kar, S., Markey, K., Simpson, P.T., Bellei, C., Green, J.S., Nagel, S. R., Kneip, S., Carroll, D.C., Dromey, B.Willingale, L., Clark, E.L.McKenna, P., Najmudin, Z., Krushelnick, K., Norreys, P., Clarke, R.J., Neely, D., Borghesi, M. & Zepf, M. (2008). Dynamic control of laser-produced proton beams. Phys. Rev. Lett. 100, 105004.CrossRefGoogle ScholarPubMed
Kemp, A. & Divol, L. (2012). Interatction physics of multipicosecond petawatt laser pulses with overdense plasma. Phys. Rev. Lett. 109, 195005.CrossRefGoogle ScholarPubMed
Key, M.H. (2007). Status of and prospects for the fast ignition inertial fusion concept. Phys. Plasmas 14, 055502.CrossRefGoogle Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasma. Phys. Rev. Lett. 94, 165003.CrossRefGoogle Scholar
Offermann, D.T., Flippo, K.A., Cobble, J., Schmitt, M.J., Gaillard, S.A., Bartal, T.Rose, D.V., Welch, D.R., Geissel, M. & Schollmeier, M. (2011). Characterization and focusing of light ion beams generated by ultra-intensely irradiated thin foild at the kilojoule scale. Phys. Plasmas 18, 056713.CrossRefGoogle Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2008). Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.CrossRefGoogle ScholarPubMed
Qiao, B., Foord, M.E., Wei, M.S., Stephens, R.B., Key, M.H., Mclean, H., Patel, P.K. & Beg, F.N. (2013). Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers. Phys. Rev E 87, 013108.CrossRefGoogle ScholarPubMed
Robinson, A.P.L., Strozzi, D.J., Davies, J.R., Gremillet, L., Honrubia, J.J., Johzaki, T., Kingham, R.J., Sherlock, M. & Solodov, A.A. (2014). Theory of fast electron transport for fast ignition. Nucl. Fusion 54, 054003.CrossRefGoogle Scholar
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 013021.CrossRefGoogle Scholar
Roth, M. (2009). Review on the current status and prospects of fast ignition in fusion targets driven by intense, laser generated proton beams. Plasma Phys. Contr. Fusion 51, 014004.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C, Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436.CrossRefGoogle ScholarPubMed
Schollmeier, M., Becker, S., Geiβel, M.,Flippo, K.A., Blazevic, A., Gaillard, S.A., Gautier, D.C., Gruner, F., Harres, K., Kimmel, M., Nurnberg, F., Rambo, P., Schramm, U., Schreiber, J., Schutrumpf, J., Schwarz, J., Tahir, N.A., Atherton, B., Habs, D., Hegelich, B.M. & Roth, M. (2008). Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. Phys. Rev. Lett. 101, 055004.CrossRefGoogle ScholarPubMed
Shiraga, H., Fujioka, S., Nakai, M., Watari, T., Nakamura, H., Arikawa, Y., Hosoda, H., Nagai, T., Koga, M., Kikuchi, H., Ishii, Y., Sogo, T., Shigemori, K., Nishimura, H., Zhang, Z., Tanabe, M., Ohira, S., Fujii, Y., Namimoto, T., Sakawa, Y., Maegawa, O., Ozaki, T., Tanaka, K., Habara, H., Iwawaki, T., Shimada, K., Nagatomo, H., Johzaki, T., Sunahara, A., Murakami, M., Sakagami, H., Taguchi, T., Norimatsu, T., Homma, H., Fujimoto, Y., Iwamoto, A., Miyanaga, N., Kawanaka, J., Jitsuno, T., Nakata, Y., Tsubakimoto, K., Morio, N., Kawasaki, T., Sawai, K., Tsuji, K., Murakami, H., Kanabe, T., Kondo, K., Sarukura, N., Shimizu, T., Mima, K. & Azechi, H. (2011). Fast ignition integrated experiments with Gekko and LFEX laser. Plasma Phys. Control. Fusion 53, 124029.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C.,Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Tabak, M. & Callaham-Miller, D. (1998). Design of a distributed radiator target for inertial fusion driven from two sides with heavy ion beams. Nucl. Instr. Meth. 415, 75.CrossRefGoogle Scholar
Temporal, M. (2006). Fast ignition of a compressed inertial confinement fusion hemispherical capsule by two proton beams. Phys. Plasmas 13, 122704.CrossRefGoogle Scholar
Temporal, M., Honrubia, J.J. & Atzeni, S. (2002). Numerical study of fast ignition of ablatively imploded deuterium-tritium fusion capsules by ultra-intense proton beams. Phys. Plasmas 9, 3098.CrossRefGoogle Scholar
Temporal, M., Honrubia, J.J. & Atzeni, S. (2008). Proton-beam driven fast ignition of inertially confined fuels: Reduction of the ignition energy by the use of two proton beams with radially shaped profiles. Phys. Plasmas 15, 052702.CrossRefGoogle Scholar
Temporal, M., Ramis, R., Honrubia, J.J. & Atzeni, S. (2009). Fast ignition induced by shocks generated by laser-accelerated proton beams. Plasma Phys. Contr. Fusion 51, 035010.CrossRefGoogle Scholar
Toncian, T., Borghesi, M., Fuchs, J., D'humiéres, E., Antichi, P., Audebert, P., Brambrink, E., Cecchetti, C.A., Pipahl, A., Romagnani, L. & Willi, O. (2006). Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Sci. 312, 410.CrossRefGoogle ScholarPubMed
Trubnikov, B.A. (1965). Particle interactions in a fully ionized plasma. In Review of Plasma Physics (Leontovich, M.A., Ed.), Vol. 1. New York: Consultants Bureau.Google Scholar
Weng, S.M., Murakami, M., Azechi, H., Wang, J.M., Tasoko, N., Che, M., Sheng, Z.M., Mulser, P., Yu, W. & Shen, B.F. (2014). Quasi-monoenergetic ion generation by hole-boring radiation pressure acceleration in inhomogeneous plasmas using tailored laser pulses. Phys. Plasmas 21, 012705.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Bowers, K.J., Jung, D., Fernández, J.C. & Hegelich, B.M. (2011 b). Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets. Phys. Rev. Lett. 107, 045003.CrossRefGoogle ScholarPubMed
Yin, L., Albright, B.J., Hegelich, B.M., Browers, K.J., Flippo, K.A., Kwan, T.J.T. & Fernández, J.C. (2007). Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas 14, 056706.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Jung, D., Bowers, K.J., Shah, R.C., Palaniyappan, S., Fernández, J.C. & Hegelich, B.M. (2011 c). Mono-energetic ion beam acceleration in solitary waves during relativistic transparency using high-contrast circularly polarized short-pulse laser and nanoscale targets. Phys. Plasmas 18, 053103.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Jung, D., Shah, R.C., Palaniyapan, Bowers, K.J., Hening, A., Fernández, J.C. & Hegelich, B.M. (2011 a). Break-out afterburner ion acceration in the longer laser pulse length regime. Phys. Plasmas 18, 063103.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fast ignition driven by quasi-monoenergetic ions: Optimal ion type and reduction of ignition energies with an ion beam array
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Fast ignition driven by quasi-monoenergetic ions: Optimal ion type and reduction of ignition energies with an ion beam array
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Fast ignition driven by quasi-monoenergetic ions: Optimal ion type and reduction of ignition energies with an ion beam array
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *