Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-4g88t Total loading time: 0.366 Render date: 2021-09-21T19:00:02.641Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Enhanced laser ion acceleration with a multi-layer foam target assembly

Published online by Cambridge University Press:  22 August 2014

E. Yazdani
Affiliation:
Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
R. Sadighi-Bonabi*
Affiliation:
Department of Physics, Sharif University of Technology, Tehran, Iran
H. Afarideh*
Affiliation:
Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
J. Yazdanpanah
Affiliation:
Department of Physics, Sharif University of Technology, Tehran, Iran
H. Hora
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
*Corresponding
Address correspondence and reprint requests to: R. Sadighi-Bonabi, Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran, Iran. E-mail: sadighi@sharif.ir; or Hossein-Afarideh, Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran. E-mail: hafarideh@aut.ac.ir
Address correspondence and reprint requests to: R. Sadighi-Bonabi, Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran, Iran. E-mail: sadighi@sharif.ir; or Hossein-Afarideh, Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran. E-mail: hafarideh@aut.ac.ir

Abstract

Interaction of a linearly polarized Gaussian laser pulse (at relativistic intensity of 2.0 × 1020 Wcm−2) with a multi-layer foam (as a near critical density target) attached to a solid layer is investigated by using two-dimensional particle-in-cell simulation. It is found that electrons with longitudinal momentum exceeding the free electrons limit of meca02/2 so-called super-hot electrons can be produced when the direct laser acceleration regime is fulfilled and benefited from self-focusing inside of the subcritical plasma. These electrons penetrate easily through the target and can enhance greatly the sheath field at the rear, resulting in a significant increase in the maximum energy of protons in target normal sheath acceleration regime. The results indicate that the maximum proton energy is enhanced by 2.7 times via using an assembled target arrangement compared to a bare solid target. Furthermore, by demonstration of this assembly, the maximum proton energy is improved beyond the optimum amount achieved by a two-layer target proposed by Sgattoni et al. (2012).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412.CrossRefGoogle Scholar
Borghesi, M., Toncian, T., Fuchs, J., Cecchetti, C.A., Romagnani, L., Kar, S., Quinn, K., Ramakrishna, B., Wilson, P.A., Antici, P., Audebert, P., Brambrink, E., Pipahl, A., Jung, R., Amin, M., Willi, O., Larke, R.J., Notley, M., Mora, P., Grismayer, T., D'humières, E. & Sentoku, Y. (2009). Laser-driven proton acceleration and applications: Recent results. EPJST 175, 105.Google Scholar
Bulanov, S.S., Brantov, A., Bychenkov, V.Yu., Chvykov, V. , Kalinchenko, G., Matsuoka, T., Rousseau, P., Reed, S., Yanovsky, V., Litzenberg, D.W., Krushelnick, K. & Maksimchuk, A. (2008). Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. Phys. Rev. E 78, 026412.CrossRefGoogle Scholar
Bulanov, S.S., Bychenkov, V.Y, Chvykov, V., Kalinchenko, G., Litzenberg, D.W., Matsuoka, T., Thomas, A.G.R., Willingale, L., Yanovsky, V., Krushelnick, K. & Maksimchuk, A. (2010). Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas 17, 0431052010.CrossRefGoogle Scholar
Ceccotti, T., Floquet, V., Sgattoni, A., Bigongiari, A., Raynaud, M., Riconda, C., Heron, A., Baffigi, F., Labate, L., Gizzi, L.A., Vassura, L., Fuchs, J., Passoni, M., Kveton, M., Novotny, F., Possolt, M., Prokupek, J., Proska, J., Psikal, J., Stolcova, L., Velyhan, A., Bougeard, M., D'oliveira, P., Tcherbakoff, O., Reau, F., Martin, P. & Macchi, A. (2013). Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets. Phys. Rev. Lett. 111, 185001.CrossRefGoogle ScholarPubMed
Daido, H., Nishiuchi, M. & Pirozhkov, A.S. (2012). Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75, 056401.CrossRefGoogle Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.CrossRefGoogle ScholarPubMed
Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-Ter-Vehn, J., Pretzler, G., Thirolf, P., Habs, D. & Witte, K.J. (1999). Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 4772.CrossRefGoogle Scholar
Gaillard, S.A., Kluge, T., Flippo, K.A., Bussmann, M., Gall, B., Lockard, T., Geissel, M.Offermann, D.T., Schollmeier, M., Sentoku, Y. & Cowan, T.E. (2011). Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in micro-cone targets. Phys. Plasmas 18, 056710.CrossRefGoogle Scholar
Geddes, C.G.R., Toth, CS., Tilborg, J.Van., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wake field accelerator using plasma-channel guiding. Nature 431, 538541.CrossRefGoogle Scholar
Gonoskov, A.A., Korzhimanov, A.V., Eremin, V.I., Kim, A.V. & Sergeev, A.M. (2009). Multicascade proton acceleration by a superintense laser pulse in the regime of relativistically induced slab transparency. Phys. Rev. Lett. 102, 184801.CrossRefGoogle ScholarPubMed
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 2076.CrossRefGoogle Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernández, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441444.CrossRefGoogle ScholarPubMed
Henig, A., Kiefer, D., Geissler, M., Rykovanov, S.G., Ramis, R., Hörlein, R., Osterhoff, J., Major, Z.S., Veisz, L., Karsch, S., Krausz, F., Habs, D. & Schreiber, J. (2009). Laser-driven shock acceleration of ion beams from spherical mass-limited targets. Phys. Rev. Lett. 102, 095002.CrossRefGoogle ScholarPubMed
Hora, H., Sadighi-Bonabi, R., Yazdani, E., Afarideh, H., Nafari, F. & Ghorannevis, M. (2012). Effect of quantum correction on the acceleration and delayed heating of plasma blocks. Phys. Rev. E 85, 036404.CrossRefGoogle ScholarPubMed
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882.CrossRefGoogle Scholar
Hora, H. (1973). Relativistic oscillation of charged particles in laser fields and pair production. Nature Phys. Sci. 243, 34.CrossRefGoogle Scholar
Jung, D., Yin, L., Gautier, D.C., Wu, H.C., Letzring, S., Dromey, B., Shah, R., Palaniyappan, S., Shimada, T., Johnson, R.P., Schreiber, J., Habs, D., Fernández, J.C., Hegelich, B.M. & Albright, B.J. (2013). Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime. Phys. Plasmas 20, 083103.CrossRefGoogle Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Yu. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225.CrossRefGoogle Scholar
Mackinnon, A.J., Sentoku, Y., Patel, P.K., Price, D.W., Hatchett, S., Key, M.H., Andersen, C., Snavely, R. & Freeman, R.R. (2002). Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett. 88, 215006.CrossRefGoogle ScholarPubMed
Malka, V., Fritzler, S., Lefebvre, Erik, D'humieres, E., Ferrand, R., Grillon, G., Albaret, C., Meyroneinc, S., Chambaret, J.P., Antonetti, A. & Hulin, D. (2004). Practicability of proton therapy using compact laser systems. D. Med. Phys. 31, 1587.CrossRefGoogle ScholarPubMed
Margarone, D., Klimo, O., Kim, I.J., Prokupek, J., Limpouch, J., Jeong, T.M., Mocek, T., Psikal, J., Kim, H.T., Proska, J., Hnam, K., Stolcova, L., Choi, I.W., Lee, S.K., Sung, J.H., Yu, T.J. & Korn, G. (2012). Laser-driven proton acceleration enhancement by nanostructured foils. Phys. Rev. Lett. 109, 234801.CrossRefGoogle ScholarPubMed
Nakamura, T., Tampo, M., Kodama, R., Bulanovs, V. & Kando, M. (2010). Interaction of high contrast laser pulse with foam-attached target. Phys. Plasmas 17, 113107.CrossRefGoogle Scholar
Nikzad, L., Sadighi-Bonabi, R., Riazi, Z., Mohammadi, M. & Heydarian, F. (2012). Simulation of enhanced characteristic x rays from a 40-MeV electron beam laser accelerated in plasma. Phys. Rev. ST Accel. Beams 15, 021301.CrossRefGoogle Scholar
Pukhov, A., Sheng, Z.-M. & Meyer-Ter-Vehn, T. (1999). Particle acceleration in relativistic laser channels. J. Phys. Plasmas 6, 2847.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436.CrossRefGoogle Scholar
Sadighi-Bonabi, R. & Moshkelgosha, M. (2011). Self-focusing up to the incident laser wavelength by an appropriate density ramp. Laser Part. Beams 29, 453.Google Scholar
Sadighi-Bonabi, R. & Rahmatollahpur, S.H. (2010). Potential and energy of the monoenergetic electrons in an alternative ellipsoid bubble model. Phy. Rev. A. 81, 023408.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Hora, H., Riazi, Z., Yazdani, E. & Sadighi, S.K. (2010). Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition. Laser Part. Beams 28, 101.CrossRefGoogle Scholar
Sgattoni, A., Londrillo, P., Macchi, A. & Passoni, M. (2012). Laser ion acceleration using a solid target coupled with a low-density layer. Phys. Rev. E 85, 036405.CrossRefGoogle Scholar
Shirozhan, M., Moshkelgosha, M. & Sadighi-Bonabi, R. (2014). The effects of circularly polarized laser pulse on generated electron nanobunches in oscillating mirror model. Laser Part. Beams (in press).CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from Petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945.CrossRefGoogle Scholar
Sylla, F., Flacco, A., Kahaly, S., Veltcheva, M., Lifschitz, A., Malka, V., D'humieres, E., Andriyash, I. & Tikhonchuk, V. (2013). Short intense laser pulse COLLAPSE in near-critical plasma. Phys. Rev. Lett. 110, 085001.CrossRefGoogle Scholar
Wang, H.Y., Lin, C., Sheng, Z.M., Liu, B., Zhao, S., Guo, Z.Y., Lu, Y.R., He, X.T., Chen, J.E., & Yan, X.Q. (2011). Laser shaping of a relativistic intense, short gaussian pulse by a plasma lens. Phys. Rev. Lett. 107, 265002.CrossRefGoogle ScholarPubMed
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.CrossRefGoogle ScholarPubMed
Willingale, L., Nilson, P.M., Thomas, A.G.R., Bulanov, S.S., Maksimchuk, A., Nazarov, W., Sangster, T.C., Stoeckl, C. & Krushelnick, K. (2011). High-power, kilojoule laser interactions with near-critical density plasma. Phys. Plasmas 18, 056706.CrossRefGoogle Scholar
Yazdani, E., Cang, Y., Sadighi-Bonabi, R., Hora, H. & Osman, F.H. (2009). Layers from initial Rayleigh density profile by directed nonlinear force driven plasma blocks for alternative fast ignition. Laser Part. Beams 27, 149.CrossRefGoogle Scholar
Yazdanpanah, J. & Anvari, A. (2014). Effects of initially energetic electrons on relativistic laser-driven electron plasma waves. Phys. Plasmas 21, 023101.CrossRefGoogle Scholar
Yu, Wei., Bychenkov, V., Sentoku, Y., Yu, M.Y., Sheng, Z.M. & Mima, K. (2000). Electron acceleration by a short relativistic laser pulse at the front of solid targets. Phys. Rev. Lett. 85, 570.CrossRefGoogle ScholarPubMed
Zani, A., Dellasega, D., Russo, V. & Passoni, M. (2013). Ultra-low density carbon foams produced by pulsed laser deposition. Carbon 56, 358365.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Enhanced laser ion acceleration with a multi-layer foam target assembly
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Enhanced laser ion acceleration with a multi-layer foam target assembly
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Enhanced laser ion acceleration with a multi-layer foam target assembly
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *