Skip to main content Accessibility help
Hostname: page-component-59b7f5684b-8dvf2 Total loading time: 0.425 Render date: 2022-10-03T17:36:40.409Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Enhanced laser ion acceleration from mass-limited targets

Published online by Cambridge University Press:  06 May 2008

J. Limpouch*
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Praha, Czechia
J. Psikal
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Praha, Czechia
A.A. Andreev
Institute for Laser Physics, St. Petersburg, Russia
K. YU. Platonov
Institute for Laser Physics, St. Petersburg, Russia
S. Kawata
Utsunomiya University, Department of Electrical and Electronic Engineering, Utsunomiya, Japan
Address correspondence and reprint requests to: J. Limpouch, Faculty of Nuclear Sciences and Physical Engineering CTU, Brehova 7, 115 19 Praha 1, Czech Republic. E-mail:


Laser interactions with mass-limited targets are studied here via numerical simulations using our relativistic electromagnetic two-dimensional particle-in cell code including all three-velocity components. Analytical estimates are derived to clarify the simulation results. Mass-limited targets preclude the undesirable spread of the absorbed laser energy out of the interaction zone. Mass-limited targets, such as droplets, are shown here to enhance the achievable fast ion energy significantly due to an increase in the hot electron concentration. For given target dimensions, the existence is demonstrated for an optimum laser beam diameter when ion acceleration is efficient and geometrical energy losses are still acceptable. Ion energy also depends on the target geometrical form and rounded targets are found to enhance the energy of accelerated ions. The acceleration process is accompanied by generation of the dipole radiation in addition to the ordinary scattering of the electromagnetic wave.

Research Article
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Allen, M., Sentoku, Y., Audebert, P., Blazevic, A., Cowan, T., Fuchs, J., Gauthier, J.C., Geissel, M., Hegelich, M., Karsch, S., Morse, E., Patel, P.K. & Roth, M. (2003). Proton spectra from ultraintense laser-plasma interaction with thin foils: Experiments, theory, and simulation. Phys. Plasmas 10, 32833289.CrossRefGoogle Scholar
Andreev, A.A., Okada, T., Platonov, K.Y. & Toraya, S. (2004). Parameters of a fast ion jet generated by an intense ultrashort laser pulse on an inhomogeneous plasma foil. Laser Part. Beams 22, 431438.CrossRefGoogle Scholar
Brambrink, E., Roth, M., Blazevic, A. & Schlegel, T. (2006). Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part. Beams 24, 163168.CrossRefGoogle Scholar
Bychenkov, V.Y. & Kovalev, V.F. (2005). Coulomb explosion in a cluster plasma. Plasma Phys. Rept. 31, 178183.CrossRefGoogle Scholar
Ditmire, T., Zweiback, J., Yanovsky, V.P., Cowan, T.E., Hays, G. & Wharton, K.B. (1999). Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature (London) 398, 489492.CrossRefGoogle Scholar
Esirkepov, T.Z., Bulanov, S.V., Nishihara, K., Tajima, T., Pegoraro, F., Khoroshkov, V.S., Mima, K., Daido, H., Kato, Y., Kitagawa, Y., Nagai, K. & Sakabe, S. (2002). Proposed double-layer target for the generation of high-quality laser-accelerated ion beams, Phys. Rev. Lett 89, 175003.CrossRefGoogle ScholarPubMed
Esirkepov, T., Borghesi, M., Bulanov, S., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett 92, 175003.CrossRefGoogle ScholarPubMed
Fernandez, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y.Q., Wetteland, C.J. & Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Fuchs, J., Antici, P., D′Humieres, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pepin, H. & Audebert, R. (2006). Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 4854.CrossRefGoogle Scholar
Gumbrell, E.T., Comley, A.J., Hutchinson, M.H.R. & Smith, R.A. (2001). Intense laser interactions with sprays of submicron droplets. Phys. Plasmas 8, 13291339.CrossRefGoogle Scholar
He, F., Xu, H., Tian, Y.W., Yu, W., Lu, P.X. & Li, R.X. (2006). Ion cascade acceleration from the interaction of a relativistic femtosecond laser pulse with a narrow thin target. Phys. Plasmas 13, 073102.CrossRefGoogle Scholar
Kanapathipillai, M. (2006). Nonlinear absorption of ultra short laser pulses by clusters. Laser Part. Beams 24, 914.CrossRefGoogle Scholar
Karsch, S., Düsterer, S., Schwoerer, H., Ewald, F., Habs, D., Hegelich, M., Pretzler, G., Pukhov, A., Witte, K. & Sauerbrey, R. (2003). High-Intensity Laser Induced Ion Acceleration from Heavy-Water Droplets. Phys. Rev. Lett. 91, 015001.CrossRefGoogle ScholarPubMed
Kemp, A.J. & Ruhl, H. (2005). Multispecies ion acceleration off laser-irradiated water droplets. Phys. Plasmas 12, 033105.CrossRefGoogle Scholar
Kishimoto, Y., Masaki, T. & Tajima, T. (2002). High energy ions and nuclear fusion in laser-cluster interaction. Phys. Plasmas 9, 589601.CrossRefGoogle Scholar
Klimo, O. & Limpouch, J. (2006). Particle simulation of acceleration of quasineutral plasma blocks by short laser pulses. Laser Part. Beams 24, 107112.CrossRefGoogle Scholar
Kovalev, V.F., Bychenkov, V.Y. & Tikhonchuk, V.T. (2001). Ion acceleration during adiabatic plasma expansion: Renormalization group approach. JETP Lett. 74, 1014.CrossRefGoogle Scholar
Ledingham, K.W.D., McKenna, P. & Singhal, R.P. (2003). Applications for nuclear phenomena generated by ultra-intense lasers. Science 300, 11071111.CrossRefGoogle ScholarPubMed
Li, Y.T., Zhang, J., Sheng, Z.M., Teng, H., Liang, T.J., Peng, X.Y., Lu, X., Li, Y. J. & Tang, X.W. (2003). Spatial distribution of high-energy electron emission fromwater plasmas produced by femtosecond laser pulses. Phys. Rev. Lett 90, 165002.CrossRefGoogle ScholarPubMed
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Mora, P. (2005). Thin-foil expansion into a vacuum. Phys. Rev. E 72, 056401.CrossRefGoogle ScholarPubMed
Mulser, P., Kanapathipillai, M. & Hoffmann, D.H.H. (2005). Two very efficient nonlinear laser absorption mechanisms in clusters. Phys. Rev. Lett. 95, 103401.CrossRefGoogle ScholarPubMed
Nakamura, T. & Kawata, S. (2003). Origin of protons accelerated by an intense laser and the dependence of their energy on the plasma density. Phys. Rev. E 67, 026403.CrossRefGoogle ScholarPubMed
Nickles, P.V., Ter-Avetisyan, S., Schnürer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Oishi, Y., Nayuki, T., Fujii, T., Takizawa, Y., Wang, X., Yamazaki, T., Nemoto, K., Kayoiji, T., Sekiya, T., Horioka, K., Okano, Y., Hironaka, Y., Nakamura, K.G., Kondo, K. & Andreev, A.A. (2005). Dependence on laser intensity and pulse duration in proton acceleration by irradiation of ultrashort laser pulses on a Cu foil target. Phys. Plasmas 12, 073102.CrossRefGoogle Scholar
Peng, X.Y., Zhang, J., Jin, Z., Liang, T.J., Sheng, Z.M., Li, Y.J., Yu, Q.Z., Zheng, Z.Y., Wang, Z.H., Chen, Z.L., Zhong, J.Y., Tang, X.W., Yang, J. & Sun, C.J. (2004). Energetic electrons emitted from ethanol droplets irradiated by femtosecond laser pulses. Phys. Rev. E 60, 026414.Google Scholar
Psikal, J., Limpouch, J., Kawata, S. & Andreev, A.A. (2006). PIC simulations of femtosecond interactions with mass-limited targets. Cz. J. Phys. 56, B515B521.CrossRefGoogle Scholar
Sarkisov, G.S., Bychenkov, V.Y., Novikov, V.N., Tikhonchuk, V.T., Maksimchuk, A., Chen, S.Y., Wagner, R., Mourou, G. & Umstadter, D. (1999). Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet. Phys. Rev. E 59, 70427054.CrossRefGoogle ScholarPubMed
Schnürer, M., Ter-Avetisyan, S., Busch, S., Risse, E., Kalachnikov, M.P., Sandner, W. & Nickles, P. (2005). Ion acceleration with ultrafast laser driven water droplets. Laser Part. Beams 23, 337343.CrossRefGoogle Scholar
Sentoku, Y., Cowan, T.E., Kemp, A. & Ruhl, H. (2003). High energy proton acceleration in interaction of short laser pulse with dense plasma target. Phys. Plasmas 10, 20092015.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnürer, M., Busch, S., Risse, E., Nickles, P.V. & Sandner, W. (2004). Spectral dips in ion emission emerging from ultrashort laser-driven plasmas. Phys. Rev. Lett 93, 155006.CrossRefGoogle ScholarPubMed
Tikhonchuk, V.T., Andreev, A.A., Bochkarev, S.G. & Bychenkov, V.Y. (2005). Ion acceleration in short-laser-pulse interaction with solid foils. Plasma Phys. Contr. Fusion 47, B869B877.CrossRefGoogle Scholar
Umeda, T., Omura, Y. & Matsumoto, H. (2001). An improved masking method for absorbing boundaries in electromagnetic particle simulations. Comp. Phys. Comm 137, 286299.CrossRefGoogle Scholar
Umeda, T., Omura, Y., Tominaga, T. & Matsumoto, H. (2003). A new charge conservation method in electromagnetic particle-in-cell simulations. Comp. Phys. Comm 156, 7385.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser-pulses, Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar
Yu, W., Bychenkov, V., Sentoku, Y., Yu, M.Y., Sheng, Z.M. & Mima, K. (2000). Electron Acceleration by a Short Relativistic Laser Pulse at the Front of Solid Targets. Phys. Rev. Lett. 85, 570573.CrossRefGoogle ScholarPubMed
Yu, W., Xu, H., He, F., Yu, M.Y., Ishiguro, S., Zhang, J. & Wong, A.Y. (2005). Direct acceleration of solid-density plasma bunch by ultraintense laser. Phys. Rev. E 72, 046401.CrossRefGoogle ScholarPubMed
Yu, W., Yu, M.Y., Xu, H., Tian, Y.W., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma. Laser Part. Beams 25, 631638.CrossRefGoogle Scholar
Zheng, J., Sheng, Z.M., Peng, X.Y. & Zhang, J. (2005). Energetic electrons and protons generated from the interaction of ultrashort laser pulses with microdroplet plasmas. Phys. Plasmas 12, 113105.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Enhanced laser ion acceleration from mass-limited targets
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Enhanced laser ion acceleration from mass-limited targets
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Enhanced laser ion acceleration from mass-limited targets
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *