Hostname: page-component-7d684dbfc8-v2qlk Total loading time: 0 Render date: 2023-09-29T23:56:27.272Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

The effects of circularly polarized laser pulse on generated electron nano-bunches in oscillating mirror model

Published online by Cambridge University Press:  25 March 2014

M. Shirozhan
Department of Physics, Sharif University of Technology, Tehran, Iran
M. Moshkelgosha
Department of Physics, Sharif University of Technology, Tehran, Iran
R. Sadighi-Bonabi*
Department of Physics, Sharif University of Technology, Tehran, Iran
Address correspondence and reprint requests to: R. Sadighi-Bonabi. Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran, Iran. E-mail:


The effects of the polarized incident laser pulse on the electrons of the plasma surface and on the reflected pulse in the relativistic laser-plasma interaction is investigated. Based on the relativistic oscillating mirror and totally reflecting oscillating mirror (TROM) regimes, the interaction of the intense polarized laser pulses with over-dense plasma is considered. Based on the effect of ponderomotive force on the characteristic of generated electron nano-bunches, considerable increasing in the localization and charges of nano-bunches are realized. It is found that the circularly polarized laser pulse have Ne/Ncr of 1500 which is almost two and seven times more than the amounts for P-polarized and S-polarized, respectively.

Research Article
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



An Der Brügge, D. & Pukhov, A. (2010). Enhanced relativistic harmonics by electron nanobunching. Phys.Plasmas 17, 033110.CrossRefGoogle Scholar
An Der Brügge, D. (2010). Ultrashort and ultraintense electromagnetic pulses. Ph.D. thesis. Heinrich-Heine-Universität Düsseldorf.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 40.CrossRefGoogle Scholar
Baeva, T., Gordienko, S. & Pukhov, P. (2006). Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404.CrossRefGoogle Scholar
Bessonov, E.G., Gorbunkov, M.V., Ishkhanov, B.S., Kostryukov, P.V., Maslova, Yu.Ya., Shvedunov, V.I., Tunkin, V.G. & Vinogradov, A.V. (2008). Laser-electron generator for X-ray applications in science and technology. Laser Part. Beams 26, 489495.CrossRefGoogle Scholar
Bulanov, S.V., Naumova, N.M. & Pegoraro, F. (1994). Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745.CrossRefGoogle Scholar
Chyla, W.T. (2006). On generation of collimated high-power gamma beams. Laser and Particle Beams 24, 143156.CrossRefGoogle Scholar
Carman, R.L., Rhodes, C.K. & Benjamin, R.F. (1981). Observation of harmonics in the visible and ultraviolet created in CO2-laser-produced plasmas. Phys. Rev. A 24, 26492663.CrossRefGoogle Scholar
Corkum, P.B. & Krausz, F. (2007). Attosecond science. Nat. Phys. 3, 381387.CrossRefGoogle Scholar
Dromey, B., Rykovanov, S., Yeung, M., Hörlein, R., Jung, D., Gautier, D.C., Dzelzainis, T., Kiefer, D., Palaniyppan, S., Shah, R., Schreiber, J., Ruhl, H., Fernandez, J.C., Lewis, C.L.S., Zepf, M. & Hegelich, B.M. (2012). Coherent synchrotron emission from electron nanobunches formed in relativistic laser-plasma interactions. Nat. Phys. 8, 804808.CrossRefGoogle Scholar
Eliezer, S.H. (2006). The Interaction of High-Power Lasers with Plasmas. Philadelphia: Institute of Physics Publishing.Google Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.CrossRefGoogle Scholar
Gordienko, S., Pukhov, A., Shorokhov, O. & Baeva, T. (2004). Relativistic Doppler effect: Universal spectra and zeptosecond pulses. Phys. Rev. Lett. 93, 115002.CrossRefGoogle ScholarPubMed
Jackson, J.D. (1999). Classical Electrodynamics. New York: John Wiley & Sons.Google Scholar
Kawata, S.H., Kong, Q., Miyazaki, S.H., Miyauchi, K., Sonobe, R., Sakai, K., Nakajima, K., Masuda, S.H., Ho, Y.K., Miyanaga, N., Limpouch, J. & Andreev, A.A. (2005). Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser. Laser Part. Beams 23, 6167.CrossRefGoogle Scholar
Keith Matzen, M., Sweeney, M.A., Adams, R.G., Asay, J.R., Bailey, J.E., Bennett, G.R., Bliss, D.E., Bloomquist, D.D., Brunner, T.A., Campbell, R.B., Chandler, G.A., Coverdale, C.A., Cuneo, M.E, Davis, J.P., Deeney, C., Desjarlais, M.P., Donovan, G.L., Garasi, C.J., Haill, T.A., Hall, C.A., Hanson, D.L., Hurst, M.J., Jones, B., Knudson, M.D., Leeper, R.J., Lemke, R.W., Mazarakis, M.J., Mcdaniel, D.H., Mehlhorn, T.A., Nash, T.J., Olson, C.L., Porter, J.L., Rambo, P.K., Rosenthal, S.E., Rochau, G.A., Ruggles, L.E., Ruiz, C.L., Sanford, T.W.E., Seamen, J.F., Sinars, D.B., Slutz, S.A., Smith, I.C., Struve, K.W., Stygar, W.A., Vesey, R.A., Weinbrecht, E.A., Wenger, D.F. & Yu, E.P. (2005). Pulsed-power-driven high energy density physics and inertial confinement fusion research. Phys. Plasmas 12, 055503.Google Scholar
L’huillier, A. & Balcou, P.H. (1993). High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774777.CrossRefGoogle ScholarPubMed
Lichters, R., Meyer-Ter-Vehn, J. & Pukhov, A. (1996). Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 34253437.CrossRefGoogle Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Nikzad, L., Sadighi-Bonabi, R., Riazi, Z., Mohammadi, M. & Heydarian, F. (2012). Simulation of enhanced characteristic x rays from a 40-MeV electron beam laser accelerated in plasma. Phys. Rev. ST Accel. Beams 15, 021301.CrossRefGoogle Scholar
Pukhov, A., Baeva, T. & An Der Brügge, D. (2009 a). Relativistic laser plasmas for novel radiation sources. Euro. Phys.ST 175, 2533.CrossRefGoogle Scholar
Pukhov, A., Baeva, T., An Der Brügge, D. & Münster, S. (2009 b). Relativistic high harmonics and (sub-) attosecond pulses: relativistic spikes and relativistic mirror. Euro. Phys. J. D 55, 407.CrossRefGoogle Scholar
Pukhov, A., An Der Brügge, D. & Kostyukov, I. (2010). Relativistic laser plasmas for electron acceleration and short wavelength radiation generation. Plasma Phys. Contr. Fusion 52, 124039.CrossRefGoogle Scholar
Roso, L., Plaja, L., Rzazewski, K. & Von Der Linde, D. (2000). Beyond the moving mirror model: Attosecond pulses from a relativistically moving plasma. Laser Part.Beams 18, 467475.CrossRefGoogle Scholar
Rykovanov, S.G., Geissler, M., Meyer-Ter-Vehn, J. & Tsakiris, G.D. (2008). Intense single attosecond pulses from surface harmonics using the polarization gating technique. New J. Phys. 10, 025025.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Navid, H.A. & Zobdeh, P. (2009 a). Observation of quasi mono-energetic electron bunches in the new ellipsoid cavity model. Laser Part. Beams. 27, 223231.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Rahmatallahpor, S., Navid, H.A., Lotfi, E., Zobdeh, P., Reiazi, Z., Nik, M.B. &.Mohamadian, M. (2009 b). Modification of the energy of mono-energetic electron beam by ellipsoid model for the cavity in the bubble regime. Contrib. Plasma Phys. 49, 4954.CrossRefGoogle Scholar
Sadighi-Bonabia, R. & Rahmatollahpur, S.H. (2010 a). Potential and energy of the monoenergetic electrons in an alternative ellipsoid bubble model. Phys. Rev. A 81, 023408.Google Scholar
Sadighi-Bonabi, R. & Rahmatollahpur, S.H. (2010 b). A complete accounting of the monoenergetic electron parameters in an ellipsoidal bubble model. Phys. Plasmas 17, 033105.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Habibi, M. & Yazdani, E. (2010 c). Improving the relativistic self-focusing of intense laser beam in plasma using density transition. Phys. Plasmas 16, 083105.Google Scholar
Sadighi-Bonabi, R., Hora, H., Riazi, Z., Yazdani, E. & Sadighi, S.K. (2010d). Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition. Laser Part. Beams 28, 101107.CrossRefGoogle Scholar
Sadighi-Bonabi, R. & Moshkelgosha, M. (2011). Self-focusing up to the incident laser wavelength by an appropriate density ramp. Laser Part. Beams 29, 453458.Google Scholar
Sazegari, V., Mirzaie, M. & Shokri, B. (2006). Ponderomotive acceleration of electrons in the interaction of arbitrarily polarized laser pulse with a tenuous plasma. Phys. Plasmas 13, 033102.Google Scholar
Singh, K.P. (2004). Laser induced electron acceleration in vacuum. Phys. Plasmas 11, 1164.Google Scholar
Thaury, C., Quéré, F., Geindre, J.-P., Levy, A., Ceccotti, T., Monot, P., Bougeard, M., Réau, F., D'oliveira, P., Audebert, P., Marjoribanks, R. & Martin, Ph. (2007). Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 3, 424429.CrossRefGoogle Scholar
Tsakiris, J.D., Eidmann, J.K., Meyer-Ter-Vehn, J. & Krausz, F. (2006). Route to intense single attosecond pulses. New J. Phys. 8, 19.CrossRefGoogle Scholar
Wille, H., Rodriguez, M., Kasparian, J., Mondelain, D., Yu, J., Mysyrowicz, A., Sauerbrey, R., Wolf, J.P. & Wöste, L. (2002). Teramobile: A mobile femtosecond-terawatt laser and detection system. Euro. Phys. J. Appl. Phys. 20, 183190.CrossRefGoogle Scholar
Yazdani, E., Cang, Y., Sadighi-Bonabi, R., Hora, H. & Osman, F.H. (2009). Layers from initial Rayleigh density profile by directed nonlinear force driven plasma blocks for alternative fast ignition. Laser Part. Beams 27, 149156.CrossRefGoogle Scholar
Zobdeh, P., Sadighi-Bonabi, R. & Afarideh, H. (2008). New ellipsoid cavity model for high-intensity laser-plasma interaction. Plasma Devices and Operat.16, 105114.CrossRefGoogle Scholar