Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-7c2ld Total loading time: 0.408 Render date: 2021-12-05T21:42:24.426Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Betatron radiation damping in laser plasma acceleration

Published online by Cambridge University Press:  17 April 2012

Aihua Deng*
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
Kazuhisa Nakajima
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan Shanghai Jiao Tong University, Shanghai, China
Xiaomei Zhang
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
Haiyang Lu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
Baifei Shen
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
Jiansheng Liu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
Ruxin Li
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
Zhizhan Xu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
*
Address correspondence and reprint request to: Aihua Deng, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai 201800, China. E-mail: aihuadeng@siom.ac.cn and nakajima@post.kek.jp

Abstract

We explore the feasibility of accelerating electron beams up to energies much beyond 1 TeV in a realistic scale and evolution of the beam qualities such as emittance and energy spread at the final beam energy on the order of 100 TeV, using the newly formulated coupled equations describing the beam dynamics and radiative damping of electrons. As an example, we present a design for a 100 TeV laser-plasma accelerator in the operating plasma density np = 1015 cm−3 and numerical solutions for evolution of the normalized emittance as well as their analytical solutions. We show that the betatron radiative damping causes very small normalized emittance that promises future applications for the high-energy frontier physics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chao, A.W. & Tigner, M. (1999). Handbook of Accelerator Physics and Engineering (Chao, A.W. & Tigner, M., eds.). Singapore: World Scientific.CrossRefGoogle Scholar
Clayton, C.E., Ralph, J.E., Albert, F., Fonseca, R.A., Glenzer, S.H., Joshi, C., Lu, W., Marsh, K.A., Martins, S.F., Mori, W.B., Pak, A., Tsung, F.S., Pollock, B.B., Ross, J.S., Silva, L.O. & Froula, D.H. (2010). Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. Phys. Rev. Lett. 105, 105003/14.CrossRefGoogle ScholarPubMed
Esarey, E. (2000). Laser cooling of electron beams via Thomson scattering. Nucl. Instr. Meth. Phys. Res. A 455, 714.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J-P., Burgy, F. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nat. 431, 541544.CrossRefGoogle ScholarPubMed
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. & Malka, V. (2006). Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nat. 444, 737739.CrossRefGoogle ScholarPubMed
Geddes, C.G.R., Toth, CS., Tilborg, J.van, Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C.J., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nat. 431, 538541.CrossRefGoogle ScholarPubMed
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.CrossRefGoogle Scholar
Hafz, N.A.M., Jeong, T.M., Choi, I.W., Lee, S.K., Pae, K.H., Kulagin, V.K., Sung, J.H., Yu, T.J., Hong, K.H., Hosokai, T.R.Cary, J.R., Ko, D.K. & Lee, J.M. (2008). Stable generation of GeV-class electron beams from self-guided laser–plasma channels. Nat. Photo. 2, 571577.CrossRefGoogle Scholar
Huang, Z.R. & Ruth, R.D. (1998). Laser-electron storage ring. Phys. Rev. Lett. 80, 976979.CrossRefGoogle Scholar
Huang, Z.R., Chen, P. & Ruth, R.D. (1995). Radiation reaction in a continuous focusing channel. Phys. Rev. Lett. 74, 17591762.CrossRefGoogle Scholar
Jackson, J.D. (1999). Classical Electrodynamics. New York: John Wiley & Sons.Google Scholar
Kameshima, T., Hong, W., Sugiyama, K., Wen, X.L., Wu, Y.C., Tang, C.M., Qihua Zhu, Q.H., Gu, Y.Q., Zhang, B.H., Peng, H.S., Kurokawa, S., Chen, Tajima, T., Kumita, T. & Nakajima, K. (2008). 0.56 GeV laser electron acceleration in ablative-capillary- discharge plasma channel. Appl. Phys. Expr. 1, 066001/13.CrossRefGoogle Scholar
Karsch, S., Osterhoff, J., Popp, A., Rowlands-Rees, T.P., Major, ZS., Fuchs, Z.M., Marx, B., Hörlein, R., Schmid, K., Veisz, L., Becker, S., Schramm, U., Hidding, B., Pretzler, G., Habs, D., Grüner, F., Kraus, F. & Hooker, S.M. (2007). GeV-scale electron acceleration in a gas-filled capillary discharge waveguide. New J. Phys. 9, 415425.CrossRefGoogle Scholar
Kostyukov, I., Pukhov, A. & Kiselev, S. (2004). Phenomenological theory of laser-plasma interaction in “bubble” regime. Phys. Plasmas 11, 52565264.CrossRefGoogle Scholar
Kotaki, H., Daito, I., Kando, M., Hayashi, Y., Kawase, K., Kameshima, T., Fukuda, Y., Homma, T., Ma, J., Chen, L.M., Esirkepov, T. Zh., Pirozhkov, A.S., Koga, J.K., Faenov, A., Pikuz, T., Kiriyama, H., Okada, H., Shimomura, T., Nakai, Y., Tanoue, M., Sasao, H., Wakai, D., Matsuura, H., Kondo, S., Kanazawa, S., Sugiyama, A., Daido, H. & Bulanov, S.V. (2009). Electron optical injection with head-on and countercrossing colliding laser pulses. Phys. Rev. Lett. 103, 194803/14.CrossRefGoogle ScholarPubMed
Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth, CS., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimetre-scale accelerator. Nat. Physics 2, 696699.CrossRefGoogle Scholar
Liu, J.S., Xia, C.Q., Wang, W.T., Lu, H.Y., Wang, CH., Deng, A.H., Li, W.T., Zhang, H., Liang, X.Y., Leng, Y.X., Lu, X.M., Wang, C., Wang, J.Z., Nakajima, K., Li, R.X. & Xu, Z.Z. (2011). All-optical cascaded laser Wakefield accelerator using ionization-induced injection. Phys. Rev. Lett. 107, 035001/14.CrossRefGoogle ScholarPubMed
Lu, H.Y., Liu, M.W., Wang, W.T., Wang, C., Liu, J.S., Deng, A.H., Xu, J.C., Xia, C.Q., Li, W.T., Zhang, H., Lu, X.M., Wang, C., Wang, J.Z., Liang, X.Y., Leng, Y.X., Shen, B.F., Nakajima, K., Li, R.X. & Xu, Z.Z. (2011). Laser Wakefield acceleration of electron beams beyond 1 GeV from an ablative capillary discharge waveguide. Appl. Phys. Lett. 99, 091502/13.CrossRefGoogle Scholar
Lu, W., Huang, C., Zhou, M., Mori, W.B. & Katsouleas, T. (2006). Nonlinear theory for relativistic plasmawakefields in the blowout regime. Phys. Rev. Lett. 96, 165002/14.CrossRefGoogle ScholarPubMed
Lundh, O., Lim, J., Rechatin, C., Ammoura, L., Ben-Ismaïl, A., Davoine, X., Gallot, G., Goddet, J-P., Lefebvre, E., Malka, V. & Faure, J. (2011). Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator. Nat. Phys. 7, 219222.CrossRefGoogle Scholar
Malka, V. (2002). Charged particle source produced by laser–plasma interaction in the relativistic regime. Laser Part. Beams 20, 217221.CrossRefGoogle Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nat. 431, 535538.CrossRefGoogle ScholarPubMed
Mao, Q.Q., Kong, Q., Ho, Y.K., Che, H.O., Ban, H.Y., Gu, Y.J. & Kawata, S. (2010). Radiative reaction effect on electron dynamics in an ultra intense laser field. Laser Part. Beams 28, 8390.CrossRefGoogle Scholar
Martins, S.F., Fonseca, R.A., Lu, W., Mori, W.B. & Silva, L.O. (2010). Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames. Nat. Phys. 6, 311316.CrossRefGoogle Scholar
McGuffey, C., Thomas, A.G.R., Schumaker, W., Matsuoka, T., Chvykov, V., Dollar, F.J., Kalintchenko, G., Yanovsky, V., Maksimchuk, A. & Krushelnick, K. (2010). Ionization induced trapping in a laser Wakefield accelerator. Phys. Rev. Lett. 104, 025004/14.CrossRefGoogle Scholar
Michel, P., Schroeder, C.B., Shadwick, B.A., Esarey, E. & Leemans, W.P. (2006). Radiative damping and electron beam dynamics in plasma-based accelerators. Phys. Rev. E 74, 026501/114.CrossRefGoogle ScholarPubMed
Nakajima, K. (2000). Particle acceleration by ultraintense laser interactions with beams and plasmas. Laser Part. Beams 18, 519528.CrossRefGoogle Scholar
Nakajima, K., Deng, A.H., Zhang, X.M., Shen, B.F., Liu, J.S., Li, R.X., Xu, Z.Z., Ostermayr, T., Petrovics, S.Klier, C., Iqbal, K., Ruhl, H. & Tajima, T. (2011). Operating plasma density issues on large-scale laser-plasma accelerators toward high-energy frontier. Phys. Rev. 14, 091301/112.Google Scholar
Osterhoff, J., Popp, A., Major, ZS., Marx, B., Rowlands-Rees, T.P., Fuchs, M., Geissler, M., Hörlein, R., Hidding, B., Becker, S., Peralta, E.A., Schramm, U., Grüner, F., Habs, D., Krausz, F., Hooker, S.M. & Karsch, S. (2008). Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell. Phys. Rev. Lett. 101, 085002/14.CrossRefGoogle Scholar
Pak, A., Marsh, K.A., Martins, S.F., Lu, W., Mori, W.B. & Joshi, C. (2010). Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes. Phys. Rev. Lett. 104, 025003/14.CrossRefGoogle ScholarPubMed
Pollock, B.B., Clayton, C.E., Ralph, J.E., Albert, F., Davidson, A., Divol, L., Filip, C., Glenzer, S.H., Herpoldt, K., Lu, W., Marsh, K.A., Meinecke, J., Mori, W.B., Pak, A., Rensink, T.C., Ross, J.S., Shaw, J., Tynan, G.R., Joshi, C. & Froula, D.H. (2011). Demonstration of a narrow energy spread, 0.5 GeV electron beam from a two-stage laser Wakefield accelerator. Phys. Rev. Lett. 107, 045001/14.CrossRefGoogle ScholarPubMed
Schmid, K., Buck, A., Sears, C.M.S., Mikhailova, J.M., Tautz, R., Herrmann, D., Geissler, M., Krausz, F. & Veisz, L. (2010). Density-transition based electron injector for laser driven Wakefield accelerators. Phys. Rev. 13, 091301/15.Google Scholar
Schroeder, C.B., Esarey, E., Geddes, C.G.R., Benedetti, C. & Leemans, W.P. (2010). Physics considerations for laser-plasma linear colliders. Phys. Rev. 13, 101301/111.Google Scholar
Telnov, V. (1997). Laser cooling of electron beams for linear colliders. Phy. Rev. Lett. 78, 47574760.CrossRefGoogle Scholar
Wang, W.M., Sheng, Z.M. & Zhang, J. (2009). Electron injection into laser wakefields by colliding circularly-polarized laser pulses. Laser Part. Beams 27, 37.CrossRefGoogle Scholar
Weber, S., Riazuelo, G., Michel, P., Loubere, R., Walraet, F., Tikhonchuk, V.T., Malka, V., Ovadia, J. & Bonnaud, G. (2004). Modeling of laser-plasma interaction on hydrodynamic scales: Physics development and comparison with experiments. Laser Part. Beams 22, 189195CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Betatron radiation damping in laser plasma acceleration
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Betatron radiation damping in laser plasma acceleration
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Betatron radiation damping in laser plasma acceleration
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *