Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-n9lxd Total loading time: 0.501 Render date: 2022-10-06T02:39:50.150Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue false

Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities

Published online by Cambridge University Press:  18 September 2008

L. Láska*
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
K. Jungwirth
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
J. Krása
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
E. Krouský
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
M. Pfeifer
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
K. Rohlena
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
A. Velyhan
Affiliation:
Institute of Physics, ASCR v.v.i., Prague, Czech Republic
J. Ullschmied
Affiliation:
Institute of Plasma Physics, ASCR v.v.i., Prague, Czech Republic
S. Gammino
Affiliation:
INFN, Laboratori Nazionali del Sud, Catania, Italy
L. Torrisi
Affiliation:
INFN, Laboratori Nazionali del Sud, Catania, Italy
J. Badziak
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
P. Parys
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
M. Rosinski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
L. Ryć
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J. Wolowski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
*
Address correspondence and reprint request to: L. Láska, Institute of Physics, ASCR v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic. E-mail: laska@fzu.cz

Abstract

Angular distributions of currents and velocities (energies) of ions produced at various target irradiation angles and laser intensities ranged from 1010 W/cm2 to 1017 W/cm2 were analyzed. It was confirmed that for low laser intensities the ion current distributions are always peaked along the target normal. However, at laser intensities comparable to or higher than 1014 W/cm2, the preferred direction of ion emission strongly depends on the irradiation geometry (laser focus setting, the irradiation angle), and can be off the target normal. This is very likely caused by the non-linear interaction of the laser beam with produced plasma, in particular, by the action of ponderomotive forces and the laser beam self-focusing.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J. (2007). Laser-driven generation of fast particles. Opto-Electr. Rev. 15, 112.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J., Hora, H., Krása, J., Láska, L. & Rohlena, K. (2004). Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction. Plasma Phys. Contr. Fusion 46, B541B555.CrossRefGoogle Scholar
Badziak, J., Hora, H., Woryna, E., Jablonski, S., Láska, L., Parys, P., Rohlena, K. & Wolowski, J. (2003). Experimental evidence of differences in properties of fast ion fluxes from short-pulse and long-pulse laser-plasma interactions. Phys. Lett. A 315, 452457.CrossRefGoogle Scholar
Badziak, J., Kasperczuk, A., Parys, P., Pisarczyk, T., Rosinski, M., Ryć, L., Wolowski, J., Jablonski, S., Suchanska, R., Krouský, E., Láska, L., Mašek, K., Pfeifer, M., Ullschmied, J., Dareshwar, L.J., Foldes, I., Torrisi, L. & Pisarczyk, P. (2007). Production of high-current heavy ion jets at the short-wavelength subnanosecond laser-solid interaction. Appl. Phys. Lett. 91, 081502.CrossRefGoogle Scholar
Basov, N.G., Getz, K., Maksimchouk, A.M., Mikhailov, Y.A., Rode, A.V., Sklizkov, G.V., Fedotov, S.I., Ferster, E. & Hora, H. (1987). Investigation of fast ion generation in a laser plasma by X-ray-line radiation. Zh. Eksp. Teor. Fiz. 92, 12991305.Google Scholar
Buttini, E., Thum-Jager, A. & Rohr, K. (1998). The mass dependence of the jet formation in laser-produced particle beams. J. Phys. D – Appl. Phys. 31, 21652169.CrossRefGoogle Scholar
Chvojka, M., Králiková, B., Krása, J., Láska, L., Mašek, K., Rohlena, K., Skála, J., Mroz, W., Parys, P., Wolowski, J. & Woryna, E. (1994). Ion generation from Al-laser-produced plasma. Czech. J. Phys. 44, 851864.CrossRefGoogle Scholar
Ehler, A.W. (1975). High-energy ions from a CO2 laser-produced plasma. J. Appl. Phys. 46, 24642467.CrossRefGoogle Scholar
Gitomer, S.J., Jones, R.D., Begay, F., Ehler, A.W., Kepphart, J.F. & Kristal, R. (1986). Fast ions and hot electrons in the laser-plasma interactions. Phys. Fluids 29, 26792688.CrossRefGoogle Scholar
Haseroth, H. & Hora, H. (1996). Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources. Laser Part. Beams 14, 393438.CrossRefGoogle Scholar
Hauser, T., Scheid, W. & Hora, H. (1992). Theory of ions emitted from a plasma by relativistic self-focusing of laser beams. Phys. Rev. A 45, 12781281.CrossRefGoogle ScholarPubMed
Hora, H. (1969). Self-focusing of laser beams in a plasma by ponderomotive forces. Z. Physik 226, 156159.CrossRefGoogle Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasma. J. Opt. Soc. Am. 65, 882886.CrossRefGoogle Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Jungwirth, K., Cejnarová, A., Juha, L., Králiková, B., Krása, J., Krouský, E., Krupièková, P., Láska, L., Mašek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skála, J., Straka, P. & Ullschmied, J. (2001). The Prague Asterix Laser System (PALS). Phys. Plasmas 8, 24952501.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Rohlena, K., Skala, J. & Hora, H. (2006). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Plasmas 13, 062704.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007). Interferometric investigations of influence of target irradiation on the parameters of laser-produced plasma jets. Laser Part. Beams 25, 425433.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinková, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.CrossRefGoogle Scholar
Kelly, R. & Dreyfus, R.W. (1998). On the effect of Knudsen-layer formation on studies of vaporazation, sputtering, and desorption. Surf. Sci. 198, 263276.CrossRefGoogle Scholar
Krása, J., Jungwirth, K., Krouský, E., Láska, L., Rohlena, K., Pfeifer, M., Ullschmied, J. & Velyhan, A. (2007). Temperature and centre-of-mass energy of ions emitted by laser-produced polyethylene plasma. Plasma Phys. Contr. Fusion 49, 16491659.CrossRefGoogle Scholar
Krása, J., Jungwirth, K., Krouský, E., Láska, L., Rohlena, K., Ullschmied, J. & Velyhan, A. (2008). Analysis of time-of-flight spectra of ions emitted from laser-generated plasmas. Radiat. Eff. Defects Solids 163.CrossRefGoogle Scholar
Krása, J., Láska, L., Rohlena, K., Pfeifer, M., Skála, J., Králiková, B., Straka, P., Woryna, E. & Wolowski, J. (1999). The effect of laser-produced plasma expansion on the ion population. Appl. Phys. Lett. 75, 25392541.CrossRefGoogle Scholar
Krushelnik, K., Clark, E.L., Beg, F.N., Dangor, A.E., Najmudin, Z., Norreys, P.A., Wei, M. & Zepf, M. (2005). High intensity laser-plasma sources of ions-physics and future applications. Plasma Phys. Contr. Fusion 47, B451B463.CrossRefGoogle Scholar
Kumar, A., Gupta, M.K. & Sharma, R.P. (2006). Effect of ultra intense laser pulse on the propagation of electron plasma wave in relativistic and ponderomotive regime and particle acceleration. Laser Part. Beams 24, 403409.CrossRefGoogle Scholar
Láska, L., Badziak, J., Boody, F.P., Gammino, S., Hora, H., Jungwirth, K., Krása, J., Parys, P., Pfeifer, M., Rohlena, K., Torrisi, L., Ullschmid, J., Wolowski, J. & Woryna, E. (2003). Generation of multiply charged ions at low and high laser-power densities. Plasma Phys. Contr. Fusion 45, 585599.CrossRefGoogle Scholar
Láska, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krása, J., Krouský, E., Parys, P., Pfeifer, M., Rohlena, K., Ryć, L., Skála, J., Torrisi, L., Ullschmied, J. & Wolowski, J. (2007 a). Factors influencing parameters of laser ion sources. Laser Part. Beams 25, 199205.CrossRefGoogle Scholar
Láska, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krása, J., Krouský, E., Parys, P., Pfeifer, M., Rohlena, K., Ryć, L., Skála, J., Torrisi, L., Ullschmied, J. & Wolowski, J. (2007 b). The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams 25, 549556.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Králiková, B., Krása, J., Pfeifer, M., Rohlena, K., Skála, J., Ullschmied, J., Gammino, S., Torrisi, L., Boody, F.P., Badziak, J., Parys, P., Wolowski, J. & Woryna, E. (2002 a). Generation of Ta ions at high laser-power densities. Czech. J. Phys. 52, 283291.Google Scholar
Láska, L., Jungwirth, K., Králiková, B., Krása, J., Pfeifer, M., Rohlena, K., Skála, J., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Woryna, E., Torrisi, L., Gammino, S. & Boody, F.P. (2004 a). Charge-energy distribution of Ta ions from plasmas produced by 1ω and 3ω frequencies of a high-power iodine laser. Rev. Sci. Instrum. 75, 15881591.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Krása, J., Krouský, E., Pfeifer, M., Rohlena, K., Skála, J., Ullschmied, J., Velyhan, A., Kubeš, P., Badziak, J., Parys, P., Rosinski, M., Ryc, L. & Wolowski, J. (2006). Experimental studies of interaction of intense long laser pulse with a laser-created Ta plasma. Czech. J. Phys., B506B514.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Krása, J., Pfeifer, M., Rohlena, K. & Ullschmied, J. (2005 b). The effect of pre-plasma and self-focusing on characteristics of laser produced ions. Czech. J. Phys. 55, 691699.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Krása, J., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Boody, F.P., Gammino, S. & Torrisi, L. (2004 b). Generation of extreme high laser intensities in plasma. Czech. J. Phys. 54, C370C377.CrossRefGoogle Scholar
Láska, L., Jungwirth, K., Krása, J., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L. & Boody, F.P. (2005 a). Charge-state and energy enhancement of laser-produced ions due to nonlinear processes in preformed plasma. Appl. Phys. Lett. 86, 081502.CrossRefGoogle Scholar
Láska, L., Krása, J., Mašek, K., Pfeifer, M., Králiková, B., Mocek, T., Skála, J., Straka, P., Trenda, P., Rohlena, K., Woryna, E., Farny, J., Parys, P., Wolowski, J., Mroz, W., Shumshurov, A., Sharkov, B., Collier, J., Langbein, K. & Haseroth, H. (1996). Iodine laser production of highly charged Ta ions. Czech. J. Phys. 46, 10991115.CrossRefGoogle Scholar
Láska, L., Krása, J., Pfeifer, M., Rohlena, K., Gammino, S., Torrisi, L., Andò, L. & Ciavola, G. (2002 b). Angular distribution of ions emitted from Nd:YAG laser-produced plasma. Rev. Sci. Instrum. 73, 654658.CrossRefGoogle Scholar
Láska, L., Mašek, K., Králiková, B., Krása, J., Skála, J., Rohlena, K., Woryna, E., Wolowski, J., Langbein, K. & Haseroth, H. (1994). Highly-charged Ta ions produced by the photo dissociation iodine laser with subnanosecond pulses. Appl. Phys. Lett. 65, 691693.CrossRefGoogle Scholar
Láska, L., Ryc, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krasa, J., Krousky, E., Mezzasalma, A., Parys, P., Pfeifer, M., Rohlena, K., Torrisi, L., Ullschmied, J. & Wolowski, J. (2005 c). Correlation of highly charged ion and X-ray emissions from the laser-produced plasma in the presence of non-linear phenomena. Rad. Eff. Def. Solids 160, 557566.CrossRefGoogle Scholar
Lorusso, A., Krása, J., Rohlena, K., Nassisi, V., Belloni, F. & Doria, D. (2005). Charge losses in expanding plasma created by an XeCl laser. Appl. Phys. Lett. 86, 081501.CrossRefGoogle Scholar
Mróz, W., Parys, P., Wolowski, J., Woryna, E., Králiková, B., Krása, J., Láska, L., Mašek, K., Skála, J. & Rohlena, K. (1994). Investigation of iodine laser interaction of intensities Iλ2~1013–1015 W cm−2 μ2 with aluminum targets. Laser Part. Beams 12, 421433.CrossRefGoogle Scholar
Nicolaï, Ph., Tikhonchuk, V.T., Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Rohlena, K. & Ullschmied, J. (2006). Plasma jets produced in a single laser beam interaction with a planar target. Phys. Plasmas 13, 062701.CrossRefGoogle Scholar
Picciotto, A., Krása, J., Láska, L., Rohlena, K., Torrisi, L., Gammino, S., Mezzasalma, A.M. & Caridi, F. (2006). Plasma temperature and ion current analysis of gold ablation at different laser power rates. Nucl. Instrum. Meth. Phys. Res. B 247, 261267.CrossRefGoogle Scholar
Rohlena, K., Králiková, B., Krása, J., Láska, L., Mašek, K., Pfeifer, M., Skála, J., Parys, P., Wolowski, J., Woryna, E., Farny, J., Mroz, W., Roudskoy, I., Shamaev, O., Sharkov, B., Shumshurov, A., Bryunetkin, B.A., Haseroth, H., Collier, J., Kuttenberger, A., Langbein, K. & Kugker, H. (1996). Ion production by lasers using high-power densities in a near infrared region. Laser Part. Beams 14, 335345.CrossRefGoogle Scholar
Roudskoy, I.V. (1996). General features of highly charged ion generation in laser-produced plasmas. Laser Part. Beams 14, 369384.CrossRefGoogle Scholar
Rowlands, T.P. (2006). General foundation for the nonlinear ponderomotive four-force in laser-plasma interactions. Laser Part. Beams 24, 475493.CrossRefGoogle Scholar
Rus, B., Zeitoun, P., Mocek, T., Sebban, S., Kalal, M., Demir, A., Jamelot, G., Klisnick, A., Kralikova, B., Skala, J. & Tallents, G.J. (1997). Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation X-ray lasers. Laser Phys. Rev. A 56, 42294241.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Ya., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Stritzker, B., Pospieszczyk, A. & Tagle, J.A. (1981). Measurement of lattice temperature of silicon during pulsed laser annealing. Phys. Rev. Lett. 47, 356358.CrossRefGoogle Scholar
Thum, A., Rupp, A. & Rohr, K. (1994). 2-component structure in the angular emission of a laser-produced Ta plasma. J. Phys. D – Appl. Phys. 27, 17911794.CrossRefGoogle Scholar
Thum-Jager, A. & Rohr, K. (1999). Angular emission distributions of neutrals and ions in laser ablated particle beams. J. Phys. D – Appl. Phys. 32, 28272831.CrossRefGoogle Scholar
Torrisi, L., Andò, L., Ciavola, G., Gammino, S. & Barnà, A. (2001 b). Angular distribution of ejected atoms from Nd:YAG laser irradiating metals. Rev. Sci. Instrum. 72, 6872.CrossRefGoogle Scholar
Torrisi, L., Andò, L., Gammino, S., Krása, J. & Láska, L. (2001 a). Ion and neutral emission from pulsed laser irradiation of metals. Nucl. Instrum. Meth. Phys. Res. B 184, 327336.CrossRefGoogle Scholar
Torrisi, L., Ciavola, G., Gammino, S., Andò, L., Barnà, A., Láska, L. & Krása, J. (2000). Metallic etching by high power Nd:Yttrium-aluminum-garnet pulsed laser irradiation. Rev. Sci. Instrum. 71, 43304334.CrossRefGoogle Scholar
Vanrompay, P.A., Nantel, M. & Pronko, P.P. (1998). Pulse-contrast effects on energy distributions of C1+ to C4+ ions for high-intensity 100-Fs laser-ablation plasmas. Appl. Surf. Sci., 127–129, 10231028.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Boody, F.P., Hora, H., Hnatowicz, V., Jungwirth, K., Krása, J., Láska, L., Parys, P., Peøina, V., Pfeifer, M., Rohlena, K., Ryc, L., Ullschmied, J. & Woryna, E. (2002 a). Fast ion emission from the plasma produced by the PALS laser system. Plasma Phys. Cont. Fusion 44, 12771283.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Boody, F.P., Czarnecka, A., Gammino, S., Jablonski, S., Krása, J., Láska, L., Parys, P., Rohlena, K., Rosinski, M., Ryc, L., Torrisi, L. & Ullschmied, J. (2006). Generation of fast highly charged ions in laser-plasma interaction. Plasma Phys. Contr. Fusion 48, B475B482.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Boody, F.P., Gammino, S., Hora, H., Jungwirth, K., Krása, J., Láska, L., Parys, P., Pfeifer, M., Rohlena, K., Szydlowski, A., Torrisi, L., Ullschmied, J. & Woryna, E. (2003). Characteristics of ion emission from plasma produced by high-energy short-wavelength (438 nm) laser radiation. Plasma Phys. Contr. Fusion 45, 10871093.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Czarnecka, A., Parys, P., Pisarek, M., Rosinski, M., Turan, R. & Yerci, S. (2007). Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 25, 6569.CrossRefGoogle Scholar
Wolowski, J., Badziak, J., Krása, J., Láska, L., Parys, P., Rohlena, K. & Woryna, E. (2002 b). Investigations of ion emission from plasma produced by a high-power 1 ps laser pulse. Plasma Sources Sci. Technol. 11, A173A177.CrossRefGoogle Scholar
Woryna, E., Badziak, J., Krasa, J., Laska, L., Makowski, J., Parys, P., Rohlena, K., Vankov, A.B., & Wolowski, J. (2001). Dependence of parameters of Au plasmas generated by sub-nanosecond and picosecond laser pulses. Warsaw, Poland: IPPLM.Google Scholar
Woryna, E., Parys, P., Wolowski, J. & Mróz, W. (1996 b). Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams 14, 293321.CrossRefGoogle Scholar
Woryna, E., Parys, P., Wolowski, J., Krása, J., Láska, L., Králiková, B., Skála, J. & Rohlena, K. (1999). Angular distribution of ions from laser produced plasma. Laser Part. Beams 17, 307312.CrossRefGoogle Scholar
Woryna, E., Parys, P., Wolowski, J., Láska, L., Krása, J., Mašek, K., Pfeifer, M., Králiková, B., Skála, J., Straka, P. & Rohlena, K. (1996 a). Au49+, Pb50+, and Ta48+ ions from laser-produced plasmas. Appl. Phys. Lett. 69, 15471549.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *