Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-30T06:52:59.008Z Has data issue: false hasContentIssue false

40 GW Linear Transformer Driver stage for pulse generators of Mega-ampere range

Published online by Cambridge University Press:  19 June 2009

B.M. Kovalchuk
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
A.V. Kharlov*
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
A.A. Zherlitsyn
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
E.V. Kumpjak
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
N.V. Tsoy
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
V.A. Vizir
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
G.V. Smorudov
Affiliation:
Institute of High-Current Electronics, Siberian Division of Russian Academy of Sciences, Tomsk, Russia
*
Address correspondence and reprint requests to: A.V. Kharlov, 2/3 Academichesky Ave., 634055, Tomsk, Russia. E-mail akharlov@lef.hcei.tsc.ru

Abstract

Linear transformer driver (LTD) technology is actively developed at the Institute of High Current Electronics in Tomsk, Russia. This technology is being examined for use in high current high voltage pulsed accelerators. Recent development of high voltage low inductance capacitors and low inductance switches enabled to achieve ~100 ns rise time of the LTD output pulse. This technique allows one to eliminate intermediate pulse forming sections, used in the present accelerator technology, which would keep the footprint of an LTD accelerator small. LTD based drivers are currently considered for many applications, including future very high current Z-pinch drivers for inertial confinement fusion, medium current drivers with adjustable pulse length for isentropic compression experiments, and finally relatively low current accelerators for radiography and X-pinches. In this article, we present the design and test results for a new LTD stage, that operates at 100 kV charging voltage. Current amplitude up to 850 kA with ~140 ns rise time was obtained on a 0.05 Ω load. Stack of the LTD stages can be easily assembled in series or in parallel, thus providing voltage or current multiplication, respectively. Design of multi-mega-volt and multi-mega-ampere generators becomes straightforward with the LTD technology.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anatskii, A.I., Bogashev, O.S., Bukaev, P.V., Yakhruskin, Yu.P., Malyshev, I.F., Nalivaika, G.A., Pavlovskii, A.I., Suslov, V.A. & Khalchitski, E.P. (1966). High current ironless linear accelerator. Sov. At. Energy 2k, 1134.CrossRefGoogle Scholar
Andreev, S.I. & Orlov, B.I. (1966). Development of a spark discharge. I. Sov. Phys.-Techn. Phys. 10, 10971104.Google Scholar
Antici, P., Fazi, M., Lombardi, A., Migliorati, M., Palumbo, L., Audeber, P. & Fuchs, J. (2008). Numerical study of a linear accelerator using laser-generated proton beams as a source. J. Appl. Phys. 104, 124901.CrossRefGoogle Scholar
Bastrikov, A.N., Vizir, V.A., Volkov, S.N., Durakov, V.G., Efremov, A.M., Zorin, V.B., Kim, A.A., Kovalchuk, B.M., Kumpyak, E.V., Loginov, S.V., Sinebryukhov, V.A., Tsou, N.V., Chervyakov, V.V., Yakovlev, V.P. & Mesyats, G.A. (2003). Primary energy storages based on linear transformer stages. Laser Part. Beams 21, 295299.CrossRefGoogle Scholar
Bennett, G.R., Sinars, D.B., Wenger, D.F., Cuneo, M.E., Adams, R.G., Barnard, W.J., Beutler, D.E., Burr, R.A., Campbell, D.V., Claus, L.D., Foresi, J.S., Johnson, D.W., Keller, K.L., Lackey, C., Leifeste, G.T., McPherson, L.A., Mulville, T.D., Neely, K.A., Rambo, P.K., Rovang, D.C., Ruggles, L.E., Porter, J.L., Simpson, W.W., Smith, I.C. & Speas, C.S. (2006). High-brightness, high-spatial-resolution, 6.151 keV X-ray imaging of inertial confinement fusion capsule implosion and complex hydrodynamics experiments on Sandia's Z accelerator. Rev. Sci. Instrum. 77, 10E322.CrossRefGoogle Scholar
Bogdan, O.V., Karas, V.I., Kornilov, E.A. & Manuilenko, O.V. (2008). 2.5-dimensional numerical simulation of a high-current ion linear induction accelerator. Plasma Phys. Rpt. 34, 667677.CrossRefGoogle Scholar
Braginskii, S.I. (1958). Theory of the development of a spark channel. Sov. Phys. JETP 34, 1068.Google Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Christofilos, N.C., Hester, R.E., Lamb, W.A.S., Reagan, D.D., Sherwood, W.A. & Wright, R.E. (1964). High current linear induction accelerator for electrons, Rev. Sci. Instrum. 35, 886890.CrossRefGoogle Scholar
Ekdahl, C. (2002). Modern electron accelerators for radiography. IEEE Trans. Plasma Sci. 30, 254261.CrossRefGoogle Scholar
Ekdahl, C., Abeyta, E.O., Aragon, P., Archuleta, R., Bartsch, R., Bender, H., Briggs, R., Broste, W., Carlson, C., Eversole, S., Frayer, D., Gallegos, R., Harrison, J., Hughes, T., Jacquez, E., Johnson, D., Johnson, J., McCuistian, B.T., Montoy, A.N., Mostrom, C., Nath, S., Oro, D., Rowton, L., Sanchez, M., Scarpetti, R., Schauer, M., Schulze, M., Tang, Y., Tipton, A. & Tom, C.Y. (2006). Long-pulse beam stability experiments on the DARHT-II linear induction accelerator. IEEE Trans. Plasma Sci. 34, 460466.CrossRefGoogle Scholar
Humphries, S. Jr (1986). Principles of Charged Particle Acceleration. New York: Wiley-Interscience.Google Scholar
Kharlov, A.V., Kovalchuk, B.M. & Zorin, V.B. (2006). Compact high current generator for x-ray radiography. Rev. Sci. Instrum. 77, 123501.CrossRefGoogle Scholar
Kovalchuk, B.M., Kumpjak, E.V., Tsoi, N.V., Kim, A.A., Avrillaud, G., Courtois, L., Guerre, J., Hereil, P.L., Lassalle, F., Bayol, F. & L'Eplattenier, P. (2003). GEPI: A compact pulse power driver for isentropic compression experiments and for non shocked high velocity flyer plates, pp. 913916. Proc. 14th IEEE Intern. Pulsed Power Conf. Dallas, Texas.Google Scholar
Kovalchuk, B.M., Vizir, V.A., Kim, A.A., Kumpjak, E.V., Loginov, S.V., Bastrikov, A.N., Chervyakov, V.V., Tsoy, N.V., Monjaux, P. & Huet, D. (1997). Fast primary storage device utilizing a linear pulse transformer. Russian Phys. J. 40, 11421153.CrossRefGoogle Scholar
Kovalchuk, B.M., Kim, A.A., Kumpjak, E.V. & Tsoy, N.V. (1999). Linear transformer driver with 750-kA current and 400-ns current rise time. Russian Phys. J. 42, 985989.Google Scholar
Kremnev, V.V., Kovalchuk, B.M., Kim, A.A., Kumpjak, E.V., Bastrikov, A.N., Novikov, A.A. & Tsoy, N.V. (1997). Low inductance multigap spark modules. Russian Phys. J. 40, 11251134.Google Scholar
Li, G.L., Yuan, C.W., Zhang, J.Y., Shu, T. & Zhang, J. (2008). A diplexer for gigawatt class high power microwaves. Laser Part. Beams 26, 371377.CrossRefGoogle Scholar
Liu, J.L., Yin, Y., Ge, B., Zhan, T.W., Chen, X.B., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007). An electron-beam accelerator based on spiral water PFL. Laser Part. Beams 25, 593599.CrossRefGoogle Scholar
Liu, R., Zou, X., Wang, X., He, L. & Zeng, N. (2008). X-pinch experiments with pulsed power generator (PPG-1) at Tsinghua University. Laser Part. Beams 26, 3336.CrossRefGoogle Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Mazarakis, M.G., Fowler, W.E., McDaniel, D.H., Olson, C.L., Sonrisa, T., Struve, K.W., Stugar, W.A., Kim, A.A. & Sinebryukhov, V.A. (2007). High current linear transformer driver (LTD) experiments. Proc. 16th IEEE Intern. Pulsed Power Conference. Albuquerque, New Mexico.Google Scholar
Merle, E., Bombardier, F., Delvaux, J., Mouillet, M., Pierret, O., Ribes, J.C. & Vermare, C. (2002). Progress with the 2-3 kA AIRIX electron beam. Proc. European Particle Accelerator conference. Paris, France.Google Scholar
Miller, R.B., Marder, B.M., Coleman, P.D. & Clark, R.E. (1988). The effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators. J. Appl. Phys. 63, 9971008.CrossRefGoogle Scholar
Pavlovskii, A.I., Bossamykin, V.S., Kuleshov, G.D., Gerasimov, A.I., Tananakin, V.A. & Klementiev, A.P. (1975). Multi-element accelerators with radial lines. Sov. Phys. Dokl. 20, 441444.Google Scholar
Pavlovskii, A.I., Bossamykin, V.S., Gerasimov, A.I., Tananakin, V.A., Fedotkin, A.S., Morunov, K.A., Basmanov, V.F., Skripka, G.M., Tarasov, A.D., Gordeev, V.S., Grishin, A.V., Anfinogenov, V.Ya., Gritsyna, V.P., Averchenkov, V.Ya., Lazarev, S.A., Gorkunov, V.S., Veresov, V.P., Koshelev, A.S. & Odintsov, Yu.M. (1998). High-power pulsed electron beam accelerator (LIA-30) with radial lines. Instr. Exper. Techn. 41, 154165.Google Scholar
Ramirez, J.J., Prestwich, K.R., Johnson, D.L., Corley, J.P., Denison, G.J., Alexander, J.A., Franklin, T.L., Pankuch, P.I., Sanford, T.W.L., Sheridan, T.J., Torrison, L.L. & Zawadzkas, G.A. (1989). Proc. of the 7th IEEE Pulsed Power Conference. Albuquerque, New Mexico.Google Scholar
Rose, D.V., Welch, D.R., Oliver, B.V., Leckbee, J.J., Maenchen, J.E., Johnson, D.L., Kim, A.A., Kovalchuk, B.M. & Sinebryukhov, V.A. (2006). Numerical analysis of a pulsed compact LTD system for electron beam-driven radiography. IEEE Trans. Plasma Sci. 34, 18791887.CrossRefGoogle Scholar
Sanford, T.W.L. (1991). Dynamics of electron flows and radiation fields produced by electron-beam diodes on the HERMES III accelerator. Phys. Fluids B 3, 23872395.CrossRefGoogle Scholar
Smith, I. (1979). Linear induction accelerators made from pulse-line cavities with external pulse injection. Rev. Sci. Instrum. 50, 714718.CrossRefGoogle ScholarPubMed
Smith, I. (2004). Induction voltage adders and the induction accelerator family. Phys. Rev. ST Accel. Beams 7, 064801.CrossRefGoogle Scholar
Stygar, W.A., Cuneo, M.E., Headley, D., Ives, H.C., Leeper, R.J., Mazarakis, M.G., Olson, C.L., Porter, J.L., Wagoner, T.C. & Woodworth, J.R. (2007). Architecture of petawatt-class z-pinch accelerators. Phys. Rev. ST Accel. Beams 10, 030401/24.CrossRefGoogle Scholar
Vizir, V.A., Maksimenko, A.D., Manylov, V.I. & Smorudov, G.V. (2004). Submicrosecond pulsed high-power transformer magnetic cores. Proc. of 13th Symp. High Current Electronics. Tomsk, Russia.Google Scholar
Yatsui, K., Shimiya, K., Masugata, K., Shigeta, M. & Shibata, K. (2005). Characteristics of pulsed power generator by versatile inductive voltage adder. Laser Part. Beams 23, 573581.CrossRefGoogle Scholar
Zherlitsyn, A.A., Kovalchuk, B.M. & Kumpjak, E.V. (2008). Investigation and simulation of the capacitor discharge through a multichannel spark gap. XII Intern. Conf. on Megagauss Magnetic Field. Novosibirsk, Russia.Google Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.CrossRefGoogle Scholar