Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T09:22:27.542Z Has data issue: false hasContentIssue false

What comes to mind first? Feature type and order of production in a property generation task

Published online by Cambridge University Press:  08 April 2021

AGOSTINA VORANO*
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
LETICIA VIVAS
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Psicología Básica, Aplicada y Tecnología (IPSIBAT), and Facultad de Psicología, Universidad Nacional de Mar del Plata (UNMdP)
ANDREA MENEGOTTO
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Instituto de Humanidades y Ciencias Sociales (INHUS – UNMdP – CONICET)

Abstract

Few studies have explored in depth the mechanisms that underlie the execution of the property generation task, in spite of its importance and wide usage. The main exception to this is Santos, Chaigneau, Simmons, and Barsalou’s (2011) research: they claim that the two mechanisms at issue are word association and situated simulation. On the basis of the Linguistic and Situated Simulation theory, these researchers assert that word association is executed by a linguistic system, whilst situated simulation is executed by a situated simulation system. From these claims, the authors derive a series of predictions concerning the types of features that would be produced in the property generation task, and the order in which those types of features would appear. Our aim was to test those predictions, using an existent property generation database in Spanish. Our results are partially in accordance with Santos et al.’s results. The main divergence is related to the behavior of taxonomic superordinate features. We examine alternative explanations to account for this discrepancy. Furthermore, we criticize Santos et al.’s conception about what counts as a linguistic feature, and analyze alternative models about this issue.

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We would like to thank Dr Ava Santos for kindly answering some questions about her research, Dr Adolfo Martín García for having discussed interesting ideas with us, and Dr Nicolás Artemio Rodríguez for having collaborated with the analysis of the data. We would also like to thank the Consejo Interuniversitario Nacional for having financially supported this research. We are also thankful to two anonymous reviewers and Dr Bodo Winter for their valuable observations, which helped us improve this paper.

References

references

Andrews, M., Vigliocco, G. & Vinson, D. (2009). Integrating experiential and distributional data to learn semantic representations. Psychological Review 116(3), 463498.CrossRefGoogle ScholarPubMed
Barsalou, L. (1999). Perceptual symbol systems. Behavioral and Brain Sciences 22(4), 577660.CrossRefGoogle ScholarPubMed
Barsalou, L. (2009). Simulation, situated conceptualization, and prediction. Philosophical Transactions of the Royal Society of London: Series B 364(1521), 12811289.CrossRefGoogle ScholarPubMed
Barsalou, L., Santos, A., Simmons, W. & Wilson, C. (2008). Language and simulation in conceptual processing. In De Vega, M., Glenberg, A. & Graesser, A. (eds), Symbols, embodiment, and meaning (pp. 245283). Oxford: Oxford University Press.CrossRefGoogle Scholar
Borghesani, V. & Piazza, M. (2017). The neuro-cognitive representations of symbols: the case of concrete words. Neuropsychologia 105, 417.CrossRefGoogle ScholarPubMed
Chomsky, N. (2000). New horizons in the study of language and mind. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cree, G. & McRae, K. (2003). Analyzing the factors underlying the structure and computation of the meaning of chipmunk, cherry, chisel, cheese and cello (and many other such concrete nouns). Journal of Experimental Psychology: General 132(2), 163201.CrossRefGoogle Scholar
Devlin, J. T., Gonnerman, L. M., Andersen, E. S. & Seidenberg, M. S. (1998). Category-specific semantic deficits in focal and widespread brain damage: a computational accountJournal of Cognitive Neuroscience 10(1), 7794.CrossRefGoogle ScholarPubMed
Estes, Z., Golonka, S. & Jones, L. (2011). Thematic thinking: the apprehension and consequences of thematic relationsPsychology of Learning and Motivation: Advances in Research and Theory 54, 249294.CrossRefGoogle Scholar
García Coni, A., Ison, M. & Vivas, J. (2019). Conceptual flexibility in schoolchildren: switching between taxonomic and thematic relations. Cognitive Development 52, e100827.CrossRefGoogle Scholar
Glaser, W. (1992). Picture naming. Cognition 42(1), 61105.CrossRefGoogle ScholarPubMed
Hoffman, P., McClelland, J. & Lambon Ralph, M. (2018). Concepts, control, and context: a connectionist account of normal and disordered semantic cognition. Psychological Review 125(3), 293328.CrossRefGoogle ScholarPubMed
Katz, J. J. (1972). Semantic theory. New York: Harper and Row.Google Scholar
Lambon Ralph, M. (2014). Neurocognitive insights on conceptual knowledge and its breakdown. Philosophical Transactions of the Royal Society B: Biological Sciences 369(1634), e20120392.CrossRefGoogle ScholarPubMed
Lambon Ralph, M., Jefferies, E., Patterson, K. & Rogers, T. (2016). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience 18(1), 4255.CrossRefGoogle Scholar
Lambon Ralph, M. & Patterson, K. (2008). The hub-and-spoke hypothesis of semantic memory. In Hickok, G. & Small, S. (eds), Neurobiology of language (pp. 765775). London: Academic Press.Google Scholar
Lebois, L., Wilson-Mendenhaal, Ch. & Barsalou, L. (2015). Are automatic conceptual cores the gold standard of semantic processing? The context-dependence of spatial meaning in grounded congruency effects. Cognitive Science 39(8), 17641801.CrossRefGoogle ScholarPubMed
Manoiloff, L., Artstein, M., Canavoso, M., Fernández, L. & Segui, J. (2010). Expanded norms for 400 experimental pictures in an Argentinean Spanish speaking population. Behavior Research Methods 42(2), 452460.CrossRefGoogle Scholar
McRae, K., Cree, G., Seidenberg, M. & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods 37(4), 547559.CrossRefGoogle ScholarPubMed
Moyna, M. (2011). Compound words in Spanish: theory and history. Philadelphia, PA: John Benjamins.CrossRefGoogle Scholar
Nelson, D., McEvoy, C. & Schreiber, T. (1999). The University of South Florida free association, rhyme, and word fragment normsBehavior Research Methods, Instruments, & Computers 36(3), 402407.CrossRefGoogle Scholar
Paivio, A. (1986). Mental representations: a dual coding approach. New York: Oxford University Press.Google Scholar
Peraita, H. & Grasso, L. (2010). Corpus lingüístico de definiciones de categorías semánticas de sujetos ancianos sanos y con la enfermedad de Alzheimer: una investigación transcultural hispano-argentina. Ianua. Revista Philologica Romanica 10, 203221.Google Scholar
Pustejovsky, J. (1995). The generative lexicon. Cambridge, MA: MIT Press.Google Scholar
Pylyshyn, Z. (1973). What the mind’s eye tells the mind’s brain: a critique of mental imagery. Psychological Bulletin 80(1), 124.CrossRefGoogle Scholar
Santos, A., Chaigneau, S., Simmons, W. & Barsalou, L. (2011). Property generation reflects word association and situated simulationLanguage and Cognition 3(1), 83119.CrossRefGoogle Scholar
Simmons, W., Hamann, S., Harenski, C., Hu, X. & Barsalou, L. (2008). fMRI evidence for word association and situated simulation in conceptual processing. Journal of Physiology – Paris 102(1), 106119.CrossRefGoogle ScholarPubMed
Vivas, J., Vivas, L., Comesaña, A., García Coni, A. & Vorano, A. (2017). Spanish semantic feature production norms for 400 concrete conceptsBehavior Research Methods 49(3), 10951106.CrossRefGoogle ScholarPubMed
Vivas, L., Manoiloff, L., García, A., Lizarralde, F. & Vivas, J. (2018). Core semantic links or lexical associations: assessing the nature of responses in word association tasks. Journal of Psycholinguistic Research 48(1), 243256.CrossRefGoogle Scholar
Warrington, E. & Shallice, T. (1984). Category specific semantic impairments. Brain 107(3), 829854.CrossRefGoogle ScholarPubMed
Wu, L. & Barsalou, L. (2009). Perceptual simulation in conceptual combination: evidence from property generation. Acta Psychologica 132(2), 173189.CrossRefGoogle ScholarPubMed
Zannino, G., Perri, R., Monaco, M., Caltagirone, C., Luzzi, S. & Carlesimo, G. (2014). The special status of verbal knowledge in semantic memory: evidence from performance of semantically impaired subjects on verbalizable and non-verbalizable versions of the object decision task. Brain & Language 128(1), 917.CrossRefGoogle ScholarPubMed