Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-13T19:54:04.490Z Has data issue: false hasContentIssue false

Towards evaluating complex ontology alignments

Published online by Cambridge University Press:  29 May 2020

Lu Zhou
Affiliation:
Data Semantics Laboratory, Kansas State University, Manhattan, USA; e-mail: luzhou@ksu.edu
Elodie Thiéblin
Affiliation:
IRIT & Université de Toulouse 2 Jean Jaurès, Toulouse, France; e-mails: elodie.thieblin@irit.fr, cassia.trojahn@irit.fr
Michelle Cheatham
Affiliation:
Wright State University, Dayton, USA; e-mail: michelle.cheatham@wright.edu
Daniel Faria
Affiliation:
Instituto Gulbenkian de Ciência, Oeiras, Portugal; e-mail: dfaria@igc.gulbenkian.pt
Catia Pesquita
Affiliation:
Lasige, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; e-mail: clpesquita@fc.ul.pt
Cassia Trojahn
Affiliation:
IRIT & Université de Toulouse 2 Jean Jaurès, Toulouse, France; e-mails: elodie.thieblin@irit.fr, cassia.trojahn@irit.fr
Ondřej Zamazal
Affiliation:
Faculty of Informatics and Statistics, University of Economics, Prague, Czech Republic; e-mail: ondrej.zamazal@vse.cz

Abstract

The development of semi-automated and automated ontology alignment techniques is an important part of realizing the potential of the Semantic Web. Until very recently, most existing work in this area was focused on finding simple (1:1) equivalence correspondences between two ontologies. However, many real-world ontology pairs involve correspondences that contain multiple entities from each ontology. These ‘complex’ alignments pose a challenge for existing evaluation approaches, which hinders the development of new systems capable of finding such correspondences. This position paper surveys and analyzes the requirements for effective evaluation of complex ontology alignments and assesses the degree to which these requirements are met by existing approaches. It also provides a roadmap for future work on this topic taking into consideration emerging community initiatives and major challenges that need to be addressed.

Type
Review
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abacha, A. B. & Zweigenbaum, P. 2014. Means: une approche sémantique pour la recherche de réponses aux questions médicales. TAL 55(1), 71104.Google Scholar
Cheatham, M. & Hitzler, P. 2014. Conference v2.0: an uncertain version of the OAEI conference benchmark. In International Semantic Web Conference, 3348. Springer.CrossRefGoogle Scholar
David, J., Euzenat, J., Genevès, P. & Layada, N. 2018. Evaluation of query transformations without data: short paper. In Companion of the The Web Conference 2018 on The Web Conference 2018, WWW 2018, Lyon, France, April 23–27, 2018, 15991602.Google Scholar
David, J., Euzenat, J., Scharffe, F. & Trojahn dos Santos, C. 2011. The alignment 4.0. Semantic Web 2(1), 310.CrossRefGoogle Scholar
Duan, S., Fokoue, A., Hassanzadeh, O., Kementsietsidis, A., Srinivas, K. & Ward, M. J. 2012. Instance-based matching of large ontologies using locality-sensitive hashing. In International Semantic Web Conference, 4964. Springer.CrossRefGoogle Scholar
Ehrig, M. & Euzenat, J. 2005. Relaxed precision and recall for ontology matching. In Integrating Ontologies’05, Proceedings of the K-CAP 2005 Workshop on Integrating Ontologies, Banff, Canada, October 2, 2005.Google Scholar
Euzenat, J. 2004. An API for ontology alignment. In International Semantic Web Conference, 698–712. Springer.CrossRefGoogle Scholar
Euzenat, J. 2007. Semantic precision and recall for ontology alignment evaluation. In IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6–12, 2007, 348353.Google Scholar
Euzenat, J., Polleres, A. & Scharffe, F. 2008. Processing ontology alignments with SPARQL. In 2008 International Conference on Complex, Intelligent and Software Intensive Systems, 913917.Google Scholar
Euzenat, J., Scharffe, F. & Zimmermann, A. 2007. Expressive alignment language and implementation. https://hal.inria.fr/file/index/docid/822892/filename/kweb-2210.pdfGoogle Scholar
Euzenat, J. & Shvaiko, P. 2013. Ontology Matching. Springer.CrossRefGoogle Scholar
Hollink, L., Van Assem, M., Wang, S., Isaac, A. & Schreiber, G. 2008. Two variations on ontology alignment evaluation: methodological issues. In 5th European Semantic Web Conference, 388401.Google Scholar
Isaac, A., Matthezing, H., van der Meij, L., Schlobach, S., Wang, S. & Zinn, C. 2008. Putting ontology alignment in context: usage scenarios, deployment and evaluation in a library case. In 5th European Semantic Web Conference, 402417.Google Scholar
Isaac, A., Van Der Meij, L., Schlobach, S. & Wang, S. 2007. An empirical study of instance-based ontology matching. In The Semantic Web, 253266. Springer.CrossRefGoogle Scholar
Jiang, S., Lowd, D., Kafle, S. & Dou, D. 2016. Ontology matching with knowledge rules. In Transactions on Large-Scale Data-and Knowledge-Centered Systems XXVIII, 7595. Springer.CrossRefGoogle Scholar
Jiménez-Ruiz, E., Grau, B. C., Horrocks, I. & Berlanga, R. 2011. Logic-based assessment of the compatibility of UMLS ontology sources. Journal of Biomedical Semantics 2(1), S2.CrossRefGoogle ScholarPubMed
Kirsten, T., Thor, A. & Rahm, E. 2007. Instance-based matching of large life science ontologies. In International Conference on Data Integration in the Life Sciences, 172187. Springer.CrossRefGoogle Scholar
Maedche, A., Motik, B., Silva, N. & Volz, R. 2002. Mafra—a mapping framework for distributed ontologies. In International Conference on Knowledge Engineering and Knowledge Management, 235250. Springer.CrossRefGoogle Scholar
Makris, K., Bikakis, N., Gioldasis, N. & Christodoulakis, S. 2012. SPARQL-RW: transparent query access over mapped RDF data sources. In 15th International Conference on Extending Database Technology, 610613. ACM.CrossRefGoogle Scholar
Meilicke, C. & Stuckenschmidt, H. 2008. Incoherence as a basis for measuring the quality of ontology mappings. In 3rd International Conference on Ontology Matching, 431, 112.Google Scholar
Nunes, B. P., Mera, A., Casanova, M. A., Breitman, K. K. & Leme, L. A. P. 2011. Complex matching of RDF datatype properties. In Proceedings of the 6th International Conference on Ontology Matching, 814, 254255. CEUR-WS.org.Google Scholar
Parundekar, R., Knoblock, C. A. & Ambite, J. L. 2010. Linking and building ontologies of linked data. In ISWC, 598614. Springer.CrossRefGoogle Scholar
Parundekar, R., Knoblock, C. A. & Ambite, J. L. 2012. Discovering concept coverings in ontologies of linked data sources. In ISWC, 427443. Springer.CrossRefGoogle Scholar
Pesquita, C., Faria, D., Santos, E. & Couto, F. M. 2013. To repair or not to repair: reconciling correctness and coherence in ontology reference alignments. In OM, 1324.Google Scholar
Qi, G. & Hunter, A. 2007. Measuring incoherence in description logic-based ontologies. In The Semantic Web, 381394. Springer.CrossRefGoogle Scholar
Qin, H., Dou, D. & LePendu, P. 2007. Discovering executable semantic mappings between ontologies. In OTM Confederated International Conferences “On the Move to Meaningful Internet Systems”, 832849. Springer.CrossRefGoogle Scholar
Ritze, D., Meilicke, C., Šváb Zamazal, O. & Stuckenschmidt, H. 2009. A pattern-based ontology matching approach for detecting complex correspondences. In 4th ISWC Workshop on Ontology Matching, 2536.Google Scholar
Ritze, D., Völker, J., Meilicke, C. & Šváb Zamazal, O. 2010. Linguistic analysis for complex ontology matching. In 5th Workshop on Ontology Matching, 112.Google Scholar
Sagi, T. & Gal, A. 2018. Non-binary evaluation measures for big data integration. The VLDB Journal 27(1), 105126.CrossRefGoogle Scholar
Scharffe, F. 2009. Correspondence Patterns Representation. PhD thesis, Faculty of Mathematics, Computer Science and University of Innsbruck.Google Scholar
Schopman, B., Wang, S., Isaac, A. & Schlobach, S. 2012. Instance-based ontology matching by instance enrichment. Journal on Data Semantics 1(4), 219236.CrossRefGoogle Scholar
Serpeloni, F., Moraes, R. & Bonacin, R. 2011. Ontology mapping validation. International Journal of Web Portals 3(3), 111.CrossRefGoogle Scholar
Solimando, A., Jimenez-Ruiz, E. & Guerrini, G. 2017. Minimizing conservativity violations in ontology alignments: algorithms and evaluation. Knowledge and Information Systems 51(3), 775819.CrossRefGoogle Scholar
Solimando, A., Jimenez-Ruiz, E. & Pinkel, C. 2014. Evaluating ontology alignment systems in query answering tasks. In Proceedings of the 2014 International Conference on Posters & Demonstrations Track, 1272, 301304. CEUR-WS.org.Google Scholar
Šváb, O., Svátek, V., Berka, P., Rak, D. & Tomášek, P. 2005. Ontofarm: towards an experimental collection of parallel ontologies. In Poster Track of ISWC, 2005.Google Scholar
Thiéblin, E., Amarger, F., Haemmerlé, O., Hernandez, N. & dos Santos, C. T. (2016). Rewriting SELECT SPARQL queries from 1:n complex correspondences. In Proceedings of the 11th International Workshop on Ontology Matching Co-Located with the 15th International Semantic Web Conference (ISWC 2016), Kobe, Japan, October 18, 2016, 4960.Google Scholar
Thiéblin, E., Amarger, F., Hernandez, N., Roussey, C. & Trojahn, C. 2017. Cross-querying lod datasets using complex alignments: an application to agronomic taxa. In Research Conference on Metadata and Semantics Research, 2537. Springer.CrossRefGoogle Scholar
Thiéblin, E., Cheatham, M., Trojahn, C., Zamazal, O. & Zhou, L. 2018a. The first version of the OAEI complex alignment benchmark. In ISWC Posters and Demos. Springer.Google Scholar
Thiéblin, E., Haemmerlé, O., Hernandez, N. & Trojahn, C. 2018. Task-oriented complex ontology alignment: two alignment evaluation sets. In The Semantic Web - 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings, 655670.Google Scholar
Thiéblin, E., Haemmerlé, O. & Trojahn, C. 2018b. Complex matching based on competency questions for alignment: a first sketch. In OM 2018 - 13th ISWC Workshop on Ontology Matching.Google Scholar
Van Hage, W. R., Isaac, A. & Aleksovski, Z. 2007. Sample evaluation of ontology-matching systems. In EON, 2007, 4150.Google Scholar
Visser, P. R., Jones, D. M., Bench-Capon, T. J. & Shave, M. 1997. An analysis of ontology mismatches; heterogeneity versus interoperability. In AAAI 1997 Spring Symposium on Ontological Engineering, Stanford CA, USA, 164–72.Google Scholar
Walshe, B., Brennan, R. & O’Sullivan, D. 2016. Bayes-recce: a bayesian model for detecting restriction class correspondences in linked open data knowledge bases. International Journal on Semantic Web and Information Systems (IJSWIS) 12(2), 2552.CrossRefGoogle Scholar
Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R. & Zakharyaschev, M. 2018. Ontology-based data access: a survey. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, 5511–5519. International Joint Conferences on Artificial Intelligence Organization.CrossRefGoogle Scholar
Zamazal, O. & Svátek, V. 2017. The ten-year ontofarm and its fertilization within the onto-sphere. Web Semantics: Science, Services and Agents on the World Wide Web 43, 4653.CrossRefGoogle Scholar
Zhou, L., Cheatham, M., Krisnadhi, A. & Hitzler, P. 2018. A complex alignment benchmark: geolink dataset. In The Semantic Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA, USA, October 8–12, 2018, Proceedings, Part II, 273288.Google Scholar