Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-7mfl8 Total loading time: 0.55 Render date: 2021-11-29T09:16:11.331Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Respiratory turbinates of canids and felids: a quantitative comparison

Published online by Cambridge University Press:  18 October 2004

Blaire Van Valkenburgh
Affiliation:
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, U.S.A.
Jessica Theodor
Affiliation:
Department of Geology, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, U.S.A.
Anthony Friscia
Affiliation:
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, U.S.A.
Ari Pollack
Affiliation:
Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, U.S.A.
Timothy Rowe
Affiliation:
Department of Geological Sciences, University of Texas, Austin, TX 78712, U.S.A.
Get access

Abstract

The respiratory turbinates of mammals are complex bony plates within the nasal chamber that are covered with moist epithelium and provide an extensive surface area for the exchange of heat and water. Given their functional importance, maxilloturbinate size and structure are expected to vary predictably among species adapted to different environments. Here the first quantitative analysis is provided of maxilloturbinate structure based on high-resolution computed tomography (CT) scans of the skulls of eight canid and seven felid species. The key parameters examined were the density of the maxilloturbinate bones within the nasal chamber and how that density varied along the air pathway. In both canids and felids, total maxilloturbinate chamber volume and bone volume increased with body size, with canids having c. 1.5–2.0 times the volume of maxilloturbinate than felids of similar size. In all species, the volume of the maxilloturbinates varies from rostral to caudal, with the peak volume occurring approximately midway, close to where airway cross-sectional area is greatest. Interspecific differences among canids or felids in maxilloturbinate density were not consistent with adaptive explanations, i.e. the densest maxilloturbinates were not associated with species living in arid or cold habitats. Some of the observed variation in maxilloturbinate form might reflect a need for both low- and high-resistance pathways for airflow under alternative conditions.

Type
Research Article
Copyright
2004 The Zoological Society of London

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Respiratory turbinates of canids and felids: a quantitative comparison
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Respiratory turbinates of canids and felids: a quantitative comparison
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Respiratory turbinates of canids and felids: a quantitative comparison
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *