Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T16:06:22.772Z Has data issue: false hasContentIssue false

Persisting while changing over time: modelling the historical biogeographic of cave crickets (Orthoptera, Grylloidea) in Neotropics

Published online by Cambridge University Press:  09 January 2023

Rodrigo Antônio Castro-Souza*
Affiliation:
Laboratório de Macroecologia e Conservação da Biodiversidade, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, MT, Brazil Centro de Estudos em Biologia Subterrânea, Departamento de Ecologia e Conservação, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil
Thadeu Sobral-Souza
Affiliation:
Laboratório de Macroecologia e Conservação da Biodiversidade, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, MT, Brazil
Lucas Mendes Rabelo
Affiliation:
Centro de Estudos em Biologia Subterrânea, Departamento de Ecologia e Conservação, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil
Edison Zefa
Affiliation:
Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Instituto de Biologia, 96001-970, Capão do Leão, RS, Brazil
Rodrigo Lopes Ferreira
Affiliation:
Centro de Estudos em Biologia Subterrânea, Departamento de Ecologia e Conservação, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil
*
Author for correspondence: *Rodrigo Antônio Castro-Souza, Email: rodrigodesouzaac@gmail.com

Abstract

Using species distribution modelling (SDMs) techniques, we predicted the biogeographic history of crickets commonly found in Neotropical caves as a way to detect potential long-term environmental refuges in South America. Our models were built based on a thorough investigation of existing database regarding the genus Endecous Saussure, 1878 (Ensifera: Phalangopsidae) occurrences. The predictions of their distribution were obtained for two paleoclimate scenarios (LGM — 21 ka and Mid-Holocene — 6 ka), the current climate scenario (0 ka) and one future global warming climate scenario (RCP8.5, 2080–2100). Our findings suggest that in the past, the potential distribution of the crickets was wider, with potential forest corridors connecting different karst areas with caves within their occupancy area. The future prediction indicates a drastic reduction in their spatial distribution with an increased potential for isolation in subterranean ecosystems. Atlantic humid forest patches and caves represent the main environmental refuges for these crickets. Considering the ongoing impacts on surface environments and future climate change, the conservation of caves and karst landscapes has become one of the main strategies for the maintenance of these crickets and all the correlated subterranean communities.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allouche, O, Tsoar, A and Kadmon, R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43, 12231232. https://doi.org/10.1111/j.1365-2664.2006.01214.x CrossRefGoogle Scholar
Araújo, MB and New, M (2007) Ensemble forecasting of species distributions. Trend in Ecology and Evolution 22, 4247. https://doi.org/10.1016/j.tree.2006.09.010 CrossRefGoogle ScholarPubMed
Auler, A (2004) America, South. In Gunn, J (ed), Encyclopedia of Cave and Karst Science. New York: Dearbom, pp. 110118.Google Scholar
Auler, AS, Rubbioli, E, Menin, D and Brandi, R (2019) Histórico, ocorrência e potencial de cavernas no Brasil. In Auler, AS, Rubbioli, E, Menin, D and Brandi, R (eds), Cavernas. Atlas do Brasil Subterrâneo. Brasília: IABS, pp. 1451.Google Scholar
Badino, G (2010) Underground meteorology – “What’s the weather underground?” Acta Carsologica 39, 427448. https://doi.org/10.3986/ac.v39i3.74 CrossRefGoogle Scholar
Barry, S and Elith, J (2006) Error and uncertainty in habitat models. Journal of Applied Ecology 43, 413423. https://doi.org/10.1111/j.1365-2664.2006.01136.x CrossRefGoogle Scholar
Bellard, C, Bertelsmeier, C, Leadley, P, Thuiller, W and Courchamp, F (2012) Impacts of climate change on the future of biodiversity. Ecology Letters 15, 365377. https://doi.org/10.1111/j.1461-0248.2011.01736.x CrossRefGoogle ScholarPubMed
Bento, DM, Souza-Silva, M, Vasconcellos, A, Bellini, BC, Prous, X and Ferreira, RL (2021) Subterranean “oasis” in the Brazilian semiarid region: neglected sources of biodiversity. Biodiversity and Conservation 30, 38373857. https://doi.org/10.1007/s10531-021-02277-6 CrossRefGoogle Scholar
Bolfarini, MP and Bichuette, ME (2015) Endecous peruassuensis n. sp. (Orthoptera: Grylloidea: Phalangopsidae) from caves of Eastern Brazil: evidence of isolation in the subterranean realm and discussion about troglomorphisms. Zootaxa 4032, 297308. https://doi.org/10.11646/zootaxa.4032.3.5 CrossRefGoogle Scholar
Brasil (2021a) Câmara dos Deputados, Projeto de Lei 3729 de 2004. Available at https://www.camara.leg.br/proposicoesWeb/fichadetramitacao?idProposicao=257161 (accessed April 2021).Google Scholar
Brasil (2021b) Câmara dos Deputados, Projeto de Lei 191 de 2020. https://www.camara.leg.br/propostas-legislativas/2236765 (accessed April 2021).Google Scholar
Brookfield, AE, Macpherson, GL and Covington, MD (2016) Effects of changing meteoric precipitation patterns on groundwater temperature in karst environments. Groundwater 55, 227236. https://doi.org/10.1111/gwat.12456 CrossRefGoogle ScholarPubMed
Bryson, RW, Prendini, L, Savary, WE and Pearman, PB (2014) Caves as microrefugia: Pleistocene phylogeography of the troglophilic North American scorpion Pseudouroctonus reddelli . BMC Evolutionary Biology 14, 117. https://doi.org/10.1186/1471-2148-14-9 CrossRefGoogle ScholarPubMed
Cabette, HS, Souza, JR, Shimano, Y and Juen, L (2017) Effects of changes in the riparian forest on the butterfly community (Insecta: Lepidoptera) in Cerrado areas. Revista Brasileira de Entomologia 61, 4350. https://doi.org/10.1016/j.rbe.2016.10.004 CrossRefGoogle Scholar
Campos, LDde, Souza-Dias, PGB and Nihei, SS (2017) Taxonomic review of Eidmanacris Chopard, 1956 (Orthoptera: Grylloidea: Phalangopsidae). Zootaxa 4321, 193. https://doi:10.11646/zootaxa.4321.1.1 CrossRefGoogle Scholar
Carnaval, AC, Hickerson, MJ, Haddad, CF, Rodrigues, MT and Moritz, C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785789. https://www.science.org/doi/10.1126/science.1166955 CrossRefGoogle ScholarPubMed
Carpenter, G, Gillison, AN and Winter, J (1993) DOMAIN: a flexible modeling procedure for mapping potential distributions of animals and plants. Biodiversity and Conservation 2, 667680. https://doi.org/10.1007/BF00051966 CrossRefGoogle Scholar
Castro-Souza, RA, Junta, VGP and Ferreira, RL (2020b) Description and ecology of a new species of the cricket genus Endecous (Orthoptera: Grylloidea: Phalangopsidae) in the speleological province of Arcos-Pains-Doresópolis, Southeastern Brazil. Zootaxa 4821, 305–32. https://doi.org/10.11646/zootaxa.4821.2.4 CrossRefGoogle ScholarPubMed
Castro-Souza, RA, Zefa, E and Ferreira, RL (2017) Two new species of cave crickets Endecous (Notoendecous) Gorochov, 2014 (Orthoptera: Grylloidea: Phalangopsidae) from northeastern Brazil. Zootaxa 4318, 474498. https://doi.org/10.11646/zootaxa.4318.3.3 CrossRefGoogle Scholar
Castro-Souza, RA, Zefa, E and Ferreira, RL (2020a) New troglobitic and troglophilic syntopic species of Endecous (Orthoptera, Grylloidea, Phalangopsidae) from a Brazilian cave: a case of sympatric speciation? Zootaxa 4810, 271304. https://doi.org/10.11646/zootaxa.4810.2.3 CrossRefGoogle Scholar
CECAV (2021) Centro Nacional de Pesquisa e Conservação de Cavernas/Instituto Chico Mendes de Biodiversidade e Conservação (CECAV/ICMBIO). Áreas de Ocorrência de Cavernas do Brasil. https://www.icmbio.gov.br/cecav/projetos-e-atividades/provincias-espeleologicas.html (accessed 21 March 2021).Google Scholar
Chapman, P (1982) The Origins of Troglobites. Proceedings of the University of Bristol Spelæological Society 16, 133–41.Google Scholar
Cigliano, MM, Braun, H, Eades, DC and Otte, D (2022) Orthoptera Species File. Version 5.0/5.0. http://Orthoptera.SpeciesFile.org>20nd (accessed January 2022).Google Scholar
Costa, LP (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. Journal of Biogeography 30, 7186. https://doi.org/10.1046/j.1365-2699.2003.00792.x CrossRefGoogle Scholar
Cox, CB, Moore, PD and Ladle, RJ (2016) Biogeography: An Ecological and Evolutionary Approach. Chichester: John Wiley & Sons, 512pp.Google Scholar
De Campos, LD, Souza-Dias, PGBD, Desutter-Grandcolas, L and Nihei, S (2021) Colonization of different biomes drove the diversification of the Neotropical Eidmanacris crickets (Insecta: Orthoptera: Grylloidea: Phalangopsidae). PloS One 16, e0245325. https://doi.org/10.1371/journal.pone.0245325 CrossRefGoogle ScholarPubMed
De Farias-Martins, F, Sperber, CF, Albeny-Simões, D, Breaux, JA, Fianco, M and Szinwelski, N (2017) Forest litter crickets prefer higher substrate moisture for oviposition: evidence from field and lab experiments. Plos One 12, e0185800. https://doi.org/10.1371/journal.pone.0185800 CrossRefGoogle ScholarPubMed
Deharveng, L and Bedos, A (2018) Diversity of terrestrial invertebrates in subterranean habitats. In Moldovan, OT, Kováč, Ľ and Halse, S (eds), Cave Ecology. Cham: Springer, pp. 107172. https://doi.org/10.1007/978-3-319-98852-8_7 CrossRefGoogle Scholar
Desutter-Grandcolas, L (1993) The cricket fauna of Chiapanecan caves (Mexico): systematics, phylogeny and the evolution of troglobitic life (Orthoptera, Grylloidea, Phalangopsidae, Luzarinae). International Journal of Speleology 22, 182. https://doi.org/10.5038/1827-806X.22.1.1 CrossRefGoogle Scholar
Desutter-Grandcolas, L (1995) Toward the knowledge of the evolutionary biology of Phalangopsid crickets (Orthoptera: Grylloidea: Phalangopsidae): data, questions, and evolutionary scenarios. Journal of Orthoptera Research 4, 163–75. https://doi.org/10.2307/3503472 CrossRefGoogle Scholar
Desutter-Grandcolas, L (1997) Are troglobitic taxa troglobiomorphic? A test using phylogenetic inference. International Journal of Speleology 26, 119.CrossRefGoogle Scholar
Dinerstein, E, Olson, D, Joshi, A, Vynne, C, Burgess, ND, Wikramanayake, E., Hahn, N, Palminteri, S, Hedao, P, Noss, R, Hansen, M, Locke, H, Ellis, EC, Jones, B, Barber, CV, Hayes, R, Kormos, C, Martin, V, Crist, E, Sechrest, W, Price, L, Baillie, JEM, Weeden, D, Suckling, K, Davis, C, Sizer, N, Moore, R, Thau, D, Birch, T, Potapov, P, Turubanova, S, Tyukavina, A, de Souza, N, Pintea, L, Brito, JC, Llewellyn, OA, Miller, AG, Patzelt, A, Ghazanfar, SA, Timberlake, J, Klöser, H, Shennan-Farpón, Y, Kindt, R, Barnekow Lillesø, J-P, van Breugel, P, Graudal, L, Voge, M, Al-Shammari, KF and Saleem, M (2017) An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–45. https://doi.org/10.1093/biosci/bix014 CrossRefGoogle ScholarPubMed
Diniz-Filho, JA, Bini, LM, Rangel, TF, Loyola, RD, Hof, C, Nogués-Bravo, D and Araújo, MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32, 897906. https://doi.org/10.1111/j.1600-0587.2009.06196.x CrossRefGoogle Scholar
Fagan, WF, Lutscher, F and Schneider, K (2007) Population and community consequences of spatial subsidies derived from central-place foraging. The American Naturalist 170, 902–15. https://doi.org/10.1086/522836 CrossRefGoogle ScholarPubMed
Farber, O and Kadmon, R (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecological Modelling 160, 115–30. https://doi.org/10.1016/S0304-3800(02)00327-7 CrossRefGoogle Scholar
Fávero, LPL, Belfiore, PP, Silva, FLD and Chan, BL (2009) Análise de dados: modelagem multivariada para tomada de decisões. Rio de Janeiro: Elsevier, 646pp.Google Scholar
Ferreira, RL, Bernard, E, da Cruz Júnior, FW, Piló, LB, Calux, A, Souza-Silva, M, Barlow, J, Pompeu, PS, Cardoso, P, Mammola, S, García, AM, Jeffery, WR, Shear, W, Medellín, RA, Wynne, JJ, Borges, PAV, Kamimura, Y, Pipan, T, Hajna, NZ and Sendra, A (2022) Brazilian cave heritage under siege. Science 375, 1238–9. https://doi.org/10.1126/science.abo1973 CrossRefGoogle ScholarPubMed
Ficetola, GF, Canedoli, C and Stoch, F (2019) The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conservation Biology 33, 214–6. https://doi.org/10.1111/cobi.13179 CrossRefGoogle ScholarPubMed
Free, QA (2019) Open Source Geographic Information System. Available at https://www.qgis.org/en/site/ (accessed 1 July 2021).Google Scholar
Ganem, RS (2009) As cavidades naturais subterrâneas e o Decreto nº 6.640/2008. http://bd.camara.gov.br (accessed 25 March 2019).Google Scholar
Guisan, A, Edwards, TC and Hastie, T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling 157, 89100. https://doi.org/10.1016/S0304-3800(02)00204-1 CrossRefGoogle Scholar
Guisan, A and Thuiller, W (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 9931009. https://doi.org/10.1111/j.1461-0248.2005.00792.x CrossRefGoogle ScholarPubMed
Heads, SW (2010) The first fossil spider cricket (Orthoptera: Gryllidae: Phalangopsinae): 20 million years of troglobiomorphosis or exaptation in the dark? Zoological Journal of the Linnean Society 158, 5665. https://doi.org/10.1111/j.1096-3642.2009.00587.x CrossRefGoogle Scholar
Hijmans, RJ, Cameron, SE, Parra, JL, Jones, PG and Jarvis, A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society 25, 1965–78. https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
Hijmans, RJ, Phillips, S, Leathwick, J and Elith, J (2022) Species distribution modeling. Package ‘dismo’ Version 1.3-8, 168.Google Scholar
Hortal, J, de Bello, F, Diniz-Filho, JAF, Lewinsohn, TM, Lobo, JM and Ladle, RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics 46, 523–49. https://doi.org/10.1146/annurev-ecolsys-112414-054400 CrossRefGoogle Scholar
Inkscape Team (2004–2021) Inkscape: A Vector Drawing Tool. Available at https://www.inkscape.org (accessed 12 February 2021).Google Scholar
INPE (2021) Instituto Nacional de Pesquisas Espaciais, Ministério da Ciência, Tecnologia e Inovações. Available at http://www.inpe.br/noticias/noticia.php?Cod_Noticia=5450 (accessed April 2021).Google Scholar
Jaffe, R, Prous, X, Zampaulo, R, Giannini, TC, Imperatriz-Fonseca, VL, Maurity, C, Oliveira, G, Brandi, IV and Siqueira, JO (2016) Reconciling mining with the conservation of cave biodiversity: a quantitative baseline to help establish conservation priorities. PloS One 11, e0168348. https://doi.org/10.1371/journal.pone.0168348 CrossRefGoogle ScholarPubMed
Johnson, MA, Saraiva, PM and Coelho, D (1999) The role of gallery forests in the distribution of Cerrado mammals. Revista Brasileira de Biologia 59, 421–7. https://doi.org/10.1590/S0034-71081999000300006 CrossRefGoogle Scholar
Junta, VGP, Castro-Souza, RA and Ferreira, RL (2020) Five new species of Phalangopsis Serville, 1831 (Orthoptera: Phalangopsidae) from Brazilian caves in the Amazon Forest. Zootaxa 4859, 151–94. https://doi.org/10.11646/zootaxa.4859.2.1 CrossRefGoogle ScholarPubMed
Kováč, Ľ (2018) Caves as oligotrophic ecosystems. In Moldovan, OT, Kováč, L and Halse, S (eds), Cave ecology. Cham: Springer, pp. 297307.CrossRefGoogle Scholar
Lavoie, KH, Helf, KL and Poulson, TL (2007) The biology and ecology of North American cave crickets. Journal of Cave and Karst Studies 69, 114–34.Google Scholar
Ledo, RMD and Colli, GR (2017) The historical connections between the Amazon and the Atlantic Forest revisited. Journal of Biogeography 44, 2551–63. https://doi.org/10.1111/jbi.13049 CrossRefGoogle Scholar
Lima-Ribeiro, MS, Varela, S, González-Hernández, J, de Oliveira, G, Diniz-Filho, JAF and Terribile, LC (2015) EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics 10, 121. https://doi.org/10.17161/bi.v10i0.4955 CrossRefGoogle Scholar
Mammola, S, Cardoso, P, Culver, DC, Deharveng, L, Ferreira, RL, Fišer, C, Galassi, DMP, Griebler, C, Halse, S, Humphreys, WF, Isaia, M, Malard, F, Martinez, A, Moldovan, OT, Niemiller, ML, Pavlek, M, Reboleira, ASPS, Souza-Silva, M, Teeling, EC, Wynne, JJ, Zagmajster, M (2019a) Scientists’ warning on the conservation of subterranean ecosystems. BioScience 69, 641–50. https://doi.org/10.1093/biosci/biz064 CrossRefGoogle Scholar
Mammola, S, Piano, E, Cardoso, P, Vernon, P, Domínguez-Villar, D, Culver, DC, Pipan, T, Isaia, M (2019b) Climate change going deep: the effects of global climatic alterations on cave ecosystems. The Anthropocene Review 6, 98116. https://doi.org/10.1177/2053019619851594 CrossRefGoogle Scholar
MapBiomas Project (2021) Coleção 5 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. Available at http://mapbiomas.org (accessed 17 May 2021).Google Scholar
Matos-Maraví, P, Wahlberg, N, Freitas, AV, Devries, P, Antonelli, A and Penz, CM (2021) Mesoamerica is a cradle and the Atlantic Forest is a museum of Neotropical butterfly diversity: insights from the evolution and biogeography of Brassolini (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society 133, 704–24. https://doi.org/10.1093/biolinnean/blab034 CrossRefGoogle Scholar
Méio, BB, Freitas, CV, Jatobá, L, Silva, ME, Ribeiro, JF and Henriques, RP (2003) Influência da flora das florestas Amazônica e Atlântica na vegetação do cerrado sensu stricto. Brazilian Journal of Botany 26, 437–44. https://doi.org/10.1590/S0100-84042003000400002 CrossRefGoogle Scholar
Mejía-Ortíz, L, Christman, MC, Pipan, T and Culver, DC (2021) What’s the relative humidity in tropical caves?. PloS One 16, e0250396. https://doi.org/10.1371/journal.pone.0250396 CrossRefGoogle ScholarPubMed
Merlo, RLSA, Castro-Souza, RA, Junta, VGP and Ferreira, RL (2022) Expanding the taxonomic knowledge of Adelosgryllus Mesa & Zefa, 2004 (Orthoptera: Grylloidea: Phalangopsidae): description of four new species for Brazilian subterranean habitats. Zootaxa 5133, 83109. https://doi.org/10.11646/zootaxa.5133.1.4 CrossRefGoogle ScholarPubMed
Mesa, A, Garcia, PC and Zefa, E (1999) Strinatia brevipennis Chopard 1970 and S. teresopolis sp. n.: description of new species and comparative study of their chromosomes and male and female Genitalia Sclerites (Grylloidea, Phalangopsidae). Journal of Orthoptera Research 8, 7381. https://doi.org/10.2307/3503429 CrossRefGoogle Scholar
Mittermeier, RA, Gil, PR, Hoffmann, M, Pilgrim, J, Brooks, T, Mittermeier, CG, Lamoreux, J and Da Fonseca, GAB (2004) Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Ecoregions: CEMEX and Agrupación Sierra Madre, 200pp. https://doi.org/10.2744/ccab-14-01-2-10.1 Google Scholar
Moldovan, OT, Kováč, Ľ and Halse, S (2018) Cave Ecology. Cham: Springer. 536pp. https://doi.org/10.1007/978-3-319-98852-8 CrossRefGoogle Scholar
Myers, N, Mittermeier, RA, Mittermeier, CG, Da Fonseca, GAB and Kent, J (2000) Biodiversity hotpots for conservation priorities. Nature 403, 853–8. https://doi.org/10.1038/35002501 CrossRefGoogle Scholar
Nimer, E (1989) Climatologia do Brasil. Rio de Janeiro: Fundação do Instituto Brasileira de Geografia e Estatística, 422pp.Google Scholar
Nix, HA (1986) A biogeographic analysis of Australian Elapid snakes. In Longmore, R (ed), Australian Flora and Fauna Series Number 7: Atlas of Elapid Snakes of Australia. Canberra: Australian Government Publishing Service, pp. 415.Google Scholar
Olson, DM, Dinerstein, E, Wikramanayake, ED, Burgess, ND, Powell, GV, Underwood, EC, D’amico, JA, Itoua, I, Strand, HE, Morrison, JC, Loucks, CJ, Allnutt, TF, Ricketts, TH, Kura, Y, John, F, Lamoreux, JF, Wettengel, WW, Hedao, P and Kassem, KR (2001) Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–8. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 CrossRefGoogle Scholar
Paixão, EA, Ferreira, RL and Paixão, CA (2017) Spatial distribution and seasonal behavior of Endecous aguassay and Eidmanacris lencionii (Orthoptera: Grylloidea, Phalangopsidae) in an artificial iron ore cave. Speleobiology Notes 9, 2333.Google Scholar
Pearson, RG, Raxworthy, CJ, Nakamura, M and Peterson, AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34, 102–17. https://doi.org/10.1111/j.1365-2699.2006.01594.x CrossRefGoogle Scholar
Peres, EA, Silva, MJ and Solferini, VN (2017) Phylogeography of the spider Araneus venatrix (Araneidae) suggests past connections between Amazon and Atlantic rainforests. Biological Journal of the Linnean Society 121, 771–85. https://doi.org/10.1093/biolinnean/blx036 CrossRefGoogle Scholar
Pérez-González, A, Ceccarelli, FS, Monte, BG, Proud, DN, DaSilva, MB and Bichuette, ME (2017) Light from dark: a relictual troglobite reveals a broader ancestral distribution for kimulid harvestmen (Opiliones: Laniatores: Kimulidae) in South America. PloS One 12, e0187919. https://doi.org/10.1371/journal.pone.0187919 CrossRefGoogle Scholar
Peterson, AT, Soberón, J, Pearson, RG, Anderson, RP, Martínez-Meyer, E, Nakamura, M and Araújo, MB (2011) Ecological Niches and Geographic Distributions (MPB-49). New Jersey: Princeton University Press, 328pp.CrossRefGoogle Scholar
Phillips, SJ and Dudik, M (2008) Modeling of species distributions with Maxent: new extensions and a com- prehensive evaluation. Ecography 31, 161–75. https://doi.org/10.1111/j.0906-7590.2008.5203.x CrossRefGoogle Scholar
Pointing, SB, Bollard-Breen, B and Gillman, LN (2014) Diverse cryptic refuges for life during glaciation. Proceedings of the National Academy of Sciences 111, 5452–3. https://doi.org/10.1073/pnas.1403594111 CrossRefGoogle ScholarPubMed
Polhemus, DA and Ferreira, RL (2018) Two unusual new genera of cavernicolous Hydrometridae (Insecta: Heteroptera) from eastern Brazil. Tijdschrift voor Entomologie 161, 2538. https://doi.org/10.1163/22119434-00002072 CrossRefGoogle Scholar
R Development Core Team (2021) R: A Language and Environment for Statistical Computing. Vienna: R foundation for statistical computing. https://www.Rproject.org/ (accessed April 2021).Google Scholar
Redford, KH and da Fonseca, GA (1986) The role of gallery forests in the zoogeography of the cerrado’s non-volant mammalian fauna. Biotropica 18, 126–35. https://doi.org/10.2307/2388755 CrossRefGoogle Scholar
Sánchez-Fernández, D, Rizzo, V, Bourdeau, C, Cieslak, A, Comas, J, Faille, A, Fresneda, J, Lleopart, E, Millán, A, Montes, A and Pallares, S (2018) The deep subterranean environment as a potential model system in ecological, biogeographical and evolutionary research. Subterranean Biology 25, 17. https://doi.org/10.3897/subtbiol.25.23530 CrossRefGoogle Scholar
Silva, JD (1996) Distribution of Amazonian and Atlantic birds in gallery forests of the Cerrado region, South America. Ornitologia neotropical 7, 118.Google Scholar
Smith, AB, Godsoe, W, Rodríguez-Sánchez, F, Wang, HH and Warren, D (2019) Niche estimation above and below the species level. Trends in Ecology & Evolution 34, 260–73. https://doi.org/10.1016/j.tree.2018.10.012 CrossRefGoogle ScholarPubMed
Sobral-Souza, T, Lima-Ribeiro, MS and Solferini, VN (2015) Biogeography of Neotropical Rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evolutionary Ecology 29, 643–55. https://doi.org/10.1007/s10682-015-9780-9 CrossRefGoogle Scholar
Sobral-Souza, T, Vancine, MH, Ribeiro, MC and Lima-Ribeiro, MS (2018) Efficiency of protected areas in Amazon and Atlantic Forest conservation: a spatio-temporal view. Acta Oecologica 87, 17. https://doi.org/10.1016/j.actao.2018.01.001 CrossRefGoogle Scholar
SOS Mata Atlântica (2021) Fundação SOS Mata Atlântica, Relatório Anual 2019. Available at https://www.sosma.org.br (accessed April 2021).Google Scholar
Souza, CM Jr, Shimbo, JZ, Rosa, MR, Parente, LL, Alencar, AA, Rudorff, BFT, Hasenack, H, Matsumoto, MG, Ferreira, L, Souza-Filho, PW and de Oliveira, SW (2020) Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and earth engine. Remote Sensing 12, 127. https://doi.org/10.3390/rs12172735 CrossRefGoogle Scholar
Souza-Dias, PGB (2015) Análise cladística e morfologia do complexo fálico de Phalangopsidae, com ênfase em Luzarinae (Orthoptera, Ensifera, Grylloidea). Doctoral Thesis, Instituto de Biociências, Universidade de São Paulo, 170 pp.Google Scholar
Souza-Dias, PGB, Bolfarini, MP, Nihei, SS and Mello, FAG (2014) Endecous apterus: a new species of cave cricket fromn northeast Brazil, with comments on the use of subterranean habitats by Luzarinae crickets (Orthoptera: Grylloidea: Phalangopsidae: Luzarinae). Zootaxa 3784, 120–30. https://doi.org/10.11646/zootaxa.3784.2.2 CrossRefGoogle Scholar
Sugai, LSM, Ochoa-Quintero, JM, Costa-Pereira, R and Roque, FO (2015) Beyond aboveground. Biodiversity and Conservation 24, 2109–12. https://doi.org/10.1007/s10531-015-0918-4 CrossRefGoogle Scholar
Tax, DMJ and Duin, RPW (2004) Support vector data description. Machine Learning 54, 4566. https://doi.org/10.1023/B:MACH.0000008084.60811.49 CrossRefGoogle Scholar
Taylor, SJ (2003) America, North: biospeleology. In Gunn, J (ed), Encyclopedia of Caves and Karst science. New York: Intercept, Routledg, Fitzroy Dearborn, pp. 4549.Google Scholar
Taylor, SJ, Krejca, JK and Denight, ML (2005) Foraging range and habitat use of Ceuthophilus secretus (Orthoptera: Rhaphidophoridae), a key trogloxene in central Texas cave communities. American Midland Naturalist 154, 97114. https://www.jstor.org/stable/3566619 CrossRefGoogle Scholar
Terribile, LC, Lima-Ribeiro, MS, Araujo, MB, Bizao, N, Collevatt, RG, Dobrovolski, R, Franco, AA, Guilhaumon, F, Lima, JDS, Murakami, DM and Nabout, JC (2012) Areas of climate stability of species ranges in the Brazilian Cerrado: disentangling uncertainties through time. Natureza & Conservação 10, 152–9. https://doi.org/10.4322/natcon.2012.025 CrossRefGoogle Scholar
Varela, S, Lima-Ribeiro, MS and Terribile, LC (2015) A short guide to the climatic variables of the last glacial maximum for biogeographers. PloS one 10, e0129037. https://doi.org/10.1371/journal.pone.0129037 CrossRefGoogle Scholar
Vasconcelos, TS and Doro, JLP (2016) Assessing how habitat loss restricts the geographic range of Neotropical anurans. Ecological Research 31, 913–21. https://doi.org/10.1007/s11284-016-1401-8 CrossRefGoogle Scholar
Vitorino, LC, Lima-Ribeiro, MS, Terribile, LC and Collevatti, RG (2018) Demographical expansion of Handroanthus ochraceus in the Cerrado during the Quaternary: implications for the genetic diversity of Neotropical trees. Biological Journal of the Linnean Society 123, 561–77. https://doi.org/10.1093/biolinnean/blx163 CrossRefGoogle Scholar
Vivo, M (1997) Mammalian evidence of historical ecological change in the Caatinga semiarid vegetation of northeastern Brazil. Journal of Computational Biology 2, 6573.Google Scholar
Weisenberg, EW and Mori, GM (2020) Digest: a lizard evolutionary history illustrates a past Neotropical dispersal route. Evolution 74, 2170–1. https://doi.org/10.1111/evo.14062 CrossRefGoogle ScholarPubMed
Werneck, FP, Costa, GC, Colli, GR, Prado, DE and Sites, JW Jr (2011) Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidence. Global Ecology and Biogeography 20, 272–88. https://doi.org/10.1111/j.1466-8238.2010.00596.x CrossRefGoogle Scholar
Werneck, FP, Nogueira, C, Colli, GR, Sites, JW Jr and Costa, GC (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. Journal of Biogeography 39, 1695–706. https://doi.org/10.1111/j.1365-2699.2012.02715.x CrossRefGoogle Scholar
White, WB and Culver, DC (2012) Encyclopedia of Caves. Burlington: Elsevier Academic Press, 945pp.Google Scholar
Willis, EO (1992) Zoogeographical origins of eastern Brazilian birds. Ornitologia Neotropical 3, 115.Google Scholar
Wynne, JJ, Howarth, FG, Mammola, S, Ferreira, RL, Cardoso, P, Lorenzo, TD, Galassi, DM, Medellin, RA, Miller, BW, Sánchez-Fernández, D and Bichuette, ME (2021) A conservation roadmap for the subterranean biome. Conservation Letters 14, e12834. https://doi.org/10.1111/conl.12834 CrossRefGoogle Scholar
Zefa, E, Redu, DR, Costa, MKM, Gottschalk, MS, Padilha, GB, Silva, AF and Martins, LP (2014) A new species of Endecous Saussure, 1878 (Orthoptera, Gryllidae) from northeast Brazil with the first X1X20 chromosomal sex system in Gryllidae. Zootaxa 3847, 125–32. https://doi.org/10.11646/zootaxa.3847.1.7 CrossRefGoogle ScholarPubMed
Zurell, D, Franklin, J, König, C, Bouchet, PJ, Dormann, CF, Elith, J, Fandos, G, Feng, X, Guillera-Arroita, G, Guisan, A and Lahoz-Monfort, JJ (2020) A standard protocol for reporting species distribution models. Ecography 43, 1261–77. https://doi.org/10.1111/ecog.04960 CrossRefGoogle Scholar
Supplementary material: File

Castro-Souza et al. supplementary material

Castro-Souza et al. supplementary material

Download Castro-Souza et al. supplementary material(File)
File 573.3 KB