Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-27T19:03:31.370Z Has data issue: false hasContentIssue false

Leaf physiological response to light environment of three tree fern species in a Mexican cloud forest

Published online by Cambridge University Press:  29 May 2013

K. Riaño
Affiliation:
Instituto de Ecología, A. C., Carretera antigua a Coatepec 351, El Haya, Xalapa, Apartado Postal 63, 91070 Veracruz, México
O. Briones*
Affiliation:
Instituto de Ecología, A. C., Carretera antigua a Coatepec 351, El Haya, Xalapa, Apartado Postal 63, 91070 Veracruz, México
*
1Corresponding author. Email: oscar.briones@inecol.edu.mx

Abstract:

Abundance and physiology of three understorey tree fern species were compared in a Mexican cloud forest. We hypothesized that the distribution of species would be associated with canopy openness and leaf physiological characteristics. In gullies (1–2% full sun), Alsophila firma was abundant, Cyathea divergens was distributed in moderately open places (4–9%), and Lophosoria quadripinnata preferred more open canopy (9–30%). Although 11 leaf traits of five plants of each species growing under closed and open canopies over 1 y did not differ within species, there were significant interspecific differences. Alsophila firma had comparatively low maximum electron transport rate ETRmax (26.8 ± 1.81 μmol m−2 s−1) and ETR light saturation point (ETRLSP: 261 ± 36.1 μmol m−2 s−1), high specific leaf area (SLA), thin leaves and decreased quantum yield during a leaf desiccation experiment. Cyathea divergens had relatively high maximum quantum yield (0.84 ± 0.004), ETRmax (37.3 ± 1.8 μmol m−2 s−1) and ETRLSP (409 ± 40.0 μmol m−2 s−1). Lophosoria quadripinnata had comparatively thick leaves, low SLA, high predawn water potential, high density (606 ± 25.5 mm−2) and small length (0.026 ± 0.002 mm) stomata. The results support the hypothesis that light sensitivity shapes tree fern distribution in the cloud forest.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ARENS, N. C. 1997. Responses of leaf anatomy to light environment in the tree fern Cyathea caracasana (Cyatheaceae) and its application to some ancient seed ferns. Palaios 12:8494.CrossRefGoogle Scholar
ARENS, N. C. & SANCHEZ-BARACALDO, P. S. 1998. Distribution of tree ferns (Cyatheaceae) across the succesional mosaic in an Andean cloud forest, Nariño, Colombia. American Fern Journal 88:6071.CrossRefGoogle Scholar
AROCA, R., IRIGOYEN, J. J. & SANCHEZ-DIAZ, M. 2003. Drought enhances maize chilling tolerance. II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiologia Plantarum 117:540549.CrossRefGoogle ScholarPubMed
BAZZAZ, F. A. 1979. The physiological ecology of plant succession. Annual Review Ecology and Systematics 10:351371.CrossRefGoogle Scholar
BERNABE, N., WILLIAMS-LINERA, G. & PALACIOS-RIOS, M. 1999. Tree ferns in the interior and at the edge of a Mexican cloud forest remnant: spore germination and sporophyte survival and establishment. Biotropica 31:8388.Google Scholar
BERRY, J. & BJÖRKMAN, O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology 31:491543.CrossRefGoogle Scholar
BRUNNER, E., DOMHOF, S. & LANGER, F. 2002. Nonparametric analysis of longitudinal data in factorial experiments. Wiley, New York. 261 pp.Google Scholar
BYSTRIAKOVA, N., BADER, M. & COOMES, D. A. 2010. Long-term tree fern dynamics linked to disturbance and shade tolerance. Journal of Vegetation Science 22:7284.CrossRefGoogle Scholar
CHAZDON, R. L., PEARCY, R. W., LEE, D. W. & FETCHER, N. 1993. Photosynthetic response of tropical forests plants to contrasting light environments. Pp. 555 in Mulkey, S. S., Chazdon, R. L. & Smith, A. P. (eds.). Tropical forest plant ecophysiology. Chapman & Hall. New York. 675 pp.Google Scholar
DENSLOW, J. S. 1980. Gap partitioning among tropical rain forest trees. Biotropica 12:4755.CrossRefGoogle Scholar
DOI, M., WADA, M. & SHIMAZAKI, K. 2006. The fern Adiantum capillus-veneris lacks stomatal responses to blue light. Plant and Cell Physiology 47:748755.CrossRefGoogle ScholarPubMed
DURAND, L. & GOLDSTEIN, G. 2001. Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia 126:345354.CrossRefGoogle ScholarPubMed
ELEUTÉRIO, A. A. & PÉREZ-SALICRUP, D. 2009. Transplanting tree ferns to promote their conservation in Mexico. American Fern Journal 99:279291.CrossRefGoogle Scholar
ENGELBRECHT, B. M. J., KURSAR, T. A. & TYREE, M. T. 2005. Drought effects on seedling survival in a tropical moist forest. Trees 19:312321.CrossRefGoogle Scholar
EVERITT, B. S. 1977. The analysis of contingency tables. Chapman and Hall, London. 128 pp.CrossRefGoogle Scholar
FARRAR, D. R., DASSLER, C., WATKINS, J. E. & CHANDA, S. 2008. Gametophyte ecology. Pp. 222256 in Ranker, T. A. & Haufler, C. H. (Eds.). Biology and evolution of ferns and lycophytes. Cambridge University Press. New York. 480 pp.CrossRefGoogle Scholar
GEβLER, A., DUARTE, H. M., FRANCO, A. C., LÜTTGE, U., DE MATTOS, E. A., NAHM, M., RODRIGUES, P. J. F. P., SCARANO, F. R. & RENNENBERG, H. 2005. Ecophysiology of selected tree species in different plant communities at the periphery of the Atlantic Forest of SE-Brazil III. Three legume trees in a semi-deciduous dry forest. Trees 19:523530.CrossRefGoogle Scholar
GESSLER, A., NITSCHKE, R., DE MATTOS, E. A., ZALUAR, H. L. T., SCARANO, F. R., RENNENBERG, H. & LÜTTGE, U. 2008. Comparison of the performance of three different ecophysiological life forms in a sandy coastal restinga ecosystem of SE-Brazil: a nodulated N2-fixing C3-shrub (Andira legalis (Vell.) Toledo), a CAM-shrub (Clusia hilariana Schltdl.) and a tap root C3-hemicryptophyte (Allagoptera arenaria (Gomes) O. Ktze.). Trees 22:105119.CrossRefGoogle Scholar
HIETZ, P. & BRIONES, O. 1998. Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia 114:305316.CrossRefGoogle Scholar
HIETZ, P. & BRIONES, O. 2001. Photosynthesis, chlorophyll fluorescence and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Plant Biology 3:279287.CrossRefGoogle Scholar
JONES, M. M., OLIVAS ROJAS, P., TUOMISTO, H. & CLARK, D. B. 2007. Environmental and neighborhood effects on tree fern distributions in a neotropical lowland rain forest. Journal of Vegetation Science 18:1324.CrossRefGoogle Scholar
KITAO, M., KITAOKA, S., KOMATSU, M., UTSUGI, H., TOBITA, H., KOIKE, T. & MARUYAMA, Y. 2012. Leaves of Japanese oak (Quercus mongolica var. crispula) mitigate photoinhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient. Physiologia Plantarum 146:192204.CrossRefGoogle ScholarPubMed
LAMBERS, H., CHAPIN, F. S. & PONS, T. L. 1998. Plant physiological ecology. Springer Verlag, New York. 540 pp.CrossRefGoogle Scholar
LARCHER, W. 2003. Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer Verlag, New York. 252 pp.CrossRefGoogle Scholar
LAURANS, M., MARTIN, O., NICOLINI, E. & VINCENT, G. 2012. Functional traits and their plasticity predict tropical trees regeneration niche even among species with intermediate light requirements. Journal of Ecology 100:14401452.CrossRefGoogle Scholar
LIN, K. H., HWANG, W. C. & LO, H. F. 2007. Chilling stress and chilling tolerance of sweet potato as sensed by chlorophyll fluorescence. Photosynthetica 45:628632.CrossRefGoogle Scholar
LETTS, M. G., RODRÍGUEZ-CALCERRADA, J., ROLO, V. & RAMBAL, S. 2012. Long-term physiological and morphological acclimation by the evergreen shrub Buxus sempervirens L. to understory and canopy gap light intensities. Trees 26:479491.CrossRefGoogle Scholar
LUDLOW, C. J. & WOLF, F. T. 1975. Photosynthesis and respiration rates of ferns. American Fern Journal 65:4348.CrossRefGoogle Scholar
MACHADO, J. L. & REICH, P. B. 1999. Evaluation of several measures of canopy openness as predictors of photosynthetic photon-flux density in deeply shaded conifer-dominated forest understorey. Canadian Journal of Forest Research 29:14381444.CrossRefGoogle Scholar
MAXWELL, K. & JOHNSON, G. N. 2000. Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51:659668.CrossRefGoogle ScholarPubMed
MEHLTRETER, K. & GARCÍA-FRANCO, J. 2008. Leaf phenology and trunk growth of the deciduous tree fern Alsophila firma (Baker) DS Conant in a lower montane Mexican forest. American Fern Journal 98:113.CrossRefGoogle Scholar
MICKEL, J. & SMITH, A. R. 2004. The pteridophytes of Mexico. Memoirs of the New York Botanical Garden 88:11054.Google Scholar
MOONEY, H. A., FIELD, C & VÁZQUEZ-YANEZ, C. 1984. Photosynthetic characteristics of wet tropical plants. Pp. 113128 in Medina, E., Mooney, H. A. & Vázquez-Yanez, C. (Eds.). Physiological ecology of plants in the wet tropics. W. Junk Publishers. The Hague. 254 pp.CrossRefGoogle Scholar
MONTGOMERY, R. 2004. Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient. Tree Physiology 24:155167.CrossRefGoogle ScholarPubMed
PÉREZ-GARCÍA, B. & RIBA, R. 1982. Germinación de esporas de Cyatheaceae bajo diversas temperaturas. Biotropica 14:281287.CrossRefGoogle Scholar
POORTER, L. 2009. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist 181:890900.CrossRefGoogle ScholarPubMed
POORTER, L. & ARETS, E. J. M. M. 2003. Light environment and tree strategies in a Bolivian tropical moist forest: an evaluation of the light partitioning hypothesis. Plant Ecology 166:295306.CrossRefGoogle Scholar
POULOS, H. M., GOODALE, U. M. & BERLYN, G. P. 2007. Drought response of two Mexican oak species, Quercus laceyi and Q. sideroxyla (Fagaceae), in relation to elevational position. American Journal of Botany 94:809818.CrossRefGoogle ScholarPubMed
QUIGG, A. 2012. Comparing the ecophysiology of four tree species growing in the coastal temperate rainforests of Prince William Sound, Alaska. Trees 26:11231136.CrossRefGoogle Scholar
RASCHER, U., LIEBIG, M. & LÜTTGE, U. 2000. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell and Environment 23:13971405.CrossRefGoogle Scholar
SALDAÑA, A., GIANOLLI, E. & LUSK, C. H. 2005. Ecophysiological responses to light availability in three Blechnum species (Pteridophyta, Blechnaceae) of different ecological breadth. Oecologia 145:252257.CrossRefGoogle ScholarPubMed
SALDAÑA, A. O., HERNANDEZ, C., COOPMAN, R. E., BRAVO, L. A. & CORCUERA, L. J. 2010. Differences in light usage among three fern species of genus Blechnum of contrasting ecological breadth in forest light gradient. Ecological Research 25:273281.CrossRefGoogle Scholar
VALLADARES, F. & NIINEMETS, Ü. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution and Systematics 39:237257.CrossRefGoogle Scholar
VOLKOVA, L., BENNETT, L. T. & TAUSZ, M. 2010. Diurnal and seasonal variations in photosynthetic and morphological traits of the tree ferns Dicksonia antarctica (Dicksoniaceae) and Cyathea australis (Cyatheaceae) in wet sclerophyll forests of Australia. Environmental and Experimental Botany 70:1119.CrossRefGoogle Scholar
WATKINS, J. E., HOLBROOK, N. M. & ZWIENIECKI, M. A. 2010. Hydraulic properties of fern sporophytes: consequences for ecological and evolutionary diversification. American Journal of Botany 97:20072019.CrossRefGoogle ScholarPubMed
WINER, B. J., BROWN, D. R. & MICHELS, K. M. 1991. Statisitical principles in experimental designs (Third edition). McGraw-Hill, Inc. New York. 1057 pp.Google Scholar
WONG, S. L., CHEN, C. W., HUANG, H. W. & WENG, J. H. 2012. Using combined measurements of gas exchange and chlorophyll fluorescence to investigate the photosynthetic light responses of plant species adapted to different light regimes. Photosynthetica 50:206214.CrossRefGoogle Scholar