Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T12:07:37.943Z Has data issue: false hasContentIssue false

The influence of burial depth on germination and establishment of seeds in chimpanzee faeces, Taï National Park, Côte d’Ivoire

Published online by Cambridge University Press:  12 October 2022

Kouadio Kan S. Koffi*
Affiliation:
Université Nangui Abrogoua, UFR des Sciences de la Nature, Laboratoire d’Ecologie et de Développement Durable, 02 BP 801 Abidjan 02, Côte d’Ivoire
Kanvaly Dosso
Affiliation:
Université Nangui Abrogoua, UFR des Sciences de la Nature, Laboratoire d’Ecologie et de Développement Durable, 02 BP 801 Abidjan 02, Côte d’Ivoire
Marios Aristophanous
Affiliation:
African Natural History Research Trust, Street Court, Kingsland, Leominster, HR6 9QA, UK Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
Philippe Moretto
Affiliation:
2 Rue Marcel Sembat, 83200Toulon, France
Seydou Tiho
Affiliation:
Université Nangui Abrogoua, UFR des Sciences de la Nature, Laboratoire d’Ecologie et de Développement Durable, 02 BP 801 Abidjan 02, Côte d’Ivoire
Roman M. Wittig
Affiliation:
Institute of Cognitive Science, CNRS UMR 5229, University Claude Bernard Lyon 1, 69675Bron, France Taï Chimpanzee Project, CSRS, 01 BP 1303 Abidjan 01, Ivory Coast
*
Author for correspondence: Kouadio Kan S. Koffi, Email: kokokasyl86@gmail.com

Abstract

One of the many ecosystem services provided by dung beetles is that of secondary seed dispersal. This paper experimentally evaluates the effectiveness of this service using the chimpanzee–dung beetle seed dispersal system in Taï National Park, Côte d’Ivoire. The study focussed on the germination rate and success of four species of seeds contained in the faeces of Pan troglodytes verus: Dacryodes klaineana (Pierre) H.J. Lam, Diospyros mannii Hiern, Pycnanthus angolensis (Welw.) Warb., and Uapaca guineensis Muell. Arg. For each species, 600 seeds, half from chimpanzee faeces and half from mother trees, were sown in nurseries at depths of 0, 2, 5, 10, and 15 cm (i.e. 120 seeds per depth; 60 from chimp and 60 from mother trees). After germination, only the seeds of Uapaca guineensis and Diospyros mannii sown at 2 and 5 cm had a >14% rate (between 14.2 and 30.8%) of germination and seedling establishment, regardless of seed origin. An increase in the depth of seed burial appears to negatively affect the probability of seedling emergence and establishment. This study shows that dung beetles have positive impacts on seed fate. However, for these plant species, the chimpanzee’s role is limited to that of primary seed dispersal.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adou, CY, Blom, EC, Dengueadhé, KTS, Van Rompaey, SRR, N’guessan, EK, Wittebolle, G and Bongers, F (2005) Diversité Floristique et Végétation Dans le Parc National de Taï, Côte d’Ivoire. Abidjan: Tropenbos- Cote d’Ivoire Série 5.Google Scholar
Aké Assi, L and Dian, B (1990) Développement agricole et protection de la forêt. Quel avenir pour la forêt? Mitteilungen aus dem Institut für Allgemeine Botanik Hamburg 23a, 169176.Google Scholar
Akhideno, LO, Ogboru, RO and Clement, N (2019) Pre-treatment effects on the germination of Dacryodes klianeana (Pierre) H.J.Lam., Seed Kernel. Greener Journal of Agricultural Sciences 9, 110112.CrossRefGoogle Scholar
Andresen, E (2001) Effects of dung presence, dung amount and secondary dispersal by dung beetles of the fate of Micropholis guyanensis (Sapotaceae) seeds in central Amazonia. Journal of Tropical Ecology 17, 6178.CrossRefGoogle Scholar
Andresen, E (2005) Effects of season and vegetation type on community organization of dung beetles in a tropical dry forest. Biotropica 37, 291300.CrossRefGoogle Scholar
Andresen, E and Feer, F (2005) The role of dung beetles as secondary seed dispersers and their effect on plant regeneration in tropical rainforests. In Forget, P-M, Lambert, JE, Hulme, PE and VanderWall, SB (eds), Seed Fate: Predation, Dispersal and Seedling Establishment. Wallingford: CAB International, pp. 331349.CrossRefGoogle Scholar
Andresen, E and Levey, DJ (2004) Effects of dung and seed size on secondary dispersal, seed predation, and seedling establishment of rain forest trees. Oecologia 139, 4554.CrossRefGoogle ScholarPubMed
Bamba, N, Ouattara, ND, Konan, D, Bakayoko, A and Tra Bi, FH (2018) Effets de cinq prétraitements sur la germination du Vène (Pterocarpus erinaceus Poir., Fabaceae) dans la Réserve du Haut Bandaman (Côte d’Ivoire). European Scientific Journal 14, 438453.Google Scholar
Ban, DS, Boesch, C, N’Goran, KA, N’Guessan, KE, Tako, NA and Janmaat, KRL (2016) “Taï chimpanzees change their travel direction for rare feeding trees providing fatty fruits”. Animal Behaviour 118, 135147.CrossRefGoogle Scholar
Band, LE, Patterson, P, Nemani, R and Running, SW (1993) Forest ecosystem processes at the watershed scale: incorporating hillslope hydrology. Agricultural and Forest Meteorology 63, 93126.CrossRefGoogle Scholar
Brewer, SW and Rejmánek, M (1999) Small rodents as significant dispersers of tree seeds in a Neotropical forest. Journal of Vegetation Science 10, 165174.CrossRefGoogle Scholar
Brodin, A (2010) The history of scatter hoarding studies. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 869881.CrossRefGoogle ScholarPubMed
Campbell, G, Kuehl, H, Kouame, PN, N’Goran, P and Boesch, C (2008) Alarming decline of West African chimpanzees in Côte d’Ivoire. Current Biology 18, 903904.CrossRefGoogle ScholarPubMed
Centre d’Expertise en Analyse Environnementale du Québec (2014) Détermination de l’azote total Kjeldahl et du phosphore total: digestion acide – méthode colorimétrique automatisée, MA. 300 – NTPT 2.0, Rév. 2, Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, pp. 16.Google Scholar
Châtelain, C, Kadjo, B, Koné, I and Refisch, J (2001) Relations Faune Flore dans le Parc National de Taï; Une Étude Bibliographique. Wageningen, Pays-Bas: Tropenbos Côte d’Ivoire, pp. 166.Google Scholar
Culot, L, Mann, DJ, Munoz Lazo, FJJ, Huynen, M-C and Heymann, EW (2011) Tamarins and dung beetles: an efficient diplochorous dispersal system in the Peruvian Amazonia. Biotropica 43, 8492.CrossRefGoogle Scholar
Dansou, B (2019) Contraintes de régénération naturelle de Afzelia africana dans la forêt de Boukoussera et le périmètre de reboisement de Parakou. Rapport pour l’obtention du diplôme de Licence Professionnelle en Aménagement et Protection de l’Environnement, pp. 28.Google Scholar
De La Mensbruge, G (1966) La germination et les plantules des essences arborées de la forêt dense humide de la Côte D’Ivoire. Publication N° 26 du C.T.F.T, pp. 389.Google Scholar
deCastro-Arrazola, I, Hortal, J, Ari Noriega, J and Sanchez-Pinero, F (2020) Assessing the functional relationship between dung beetle traits and dung removal, burial, and seedling emergence. Ecology 101, e03138.CrossRefGoogle ScholarPubMed
Evrard, Q, Haurez, B and Doucet, JL (2017) Le rôle des rongeurs dans la dispersion des diaspores en milieu forestier (Synthèse bibliographique). Biotechnology, Agronomy and Society and Environment 21, 6679.CrossRefGoogle Scholar
FAO (2019) Standard operating procedure for soil organic carbon: Walkley-Black method Titration and colorimetric method. Global Soil Partnership Network GLOSOLAN 1, pp. 25Google Scholar
FAO (2020) Évaluation des Ressources Forestières Mondiales 2020 – Principaux Résultats. Rome: FAO.Google Scholar
Fragoso, JMV (1997) Tapir-generated seed-shadows: scalede-pendent patchiness in the Amazon rain forest. Journal of Ecology 85, 519529.CrossRefGoogle Scholar
Gorchov, DL, Palmeirim, JM, Jaramillo, M and Ascorra, CF (2004) Dispersal of seeds of Hymenaea courbaril (Fabaceae) in a logged rain forest in the Peruvian Amazonian. Acta Amazonica 34, 251259.CrossRefGoogle Scholar
Granier, N, Hambuckers, A, Matsuzawa, T and Huynen, MC (2014) Density estimates and nesting-site selection in chimpanzees of the Nimba mountains, Côte d’Ivoire, and Guinea. American Journal of Primatology 76, 9991010.CrossRefGoogle ScholarPubMed
Groupe de Spécialistes des Primates de la CSE de l’UICN (2020) Plan D’action Régional pour la Conservation des chimpanzés d’Afrique de l’Ouest (Pan troglodytes verus) 2020–2030. Gland, Suisse: UICN.Google Scholar
Guyot, L (1978) La Biologie Végétale. 4ème Édition. Collection “Que Sais-Je”. Paris: Presses Universitaires de France, pp. 127.Google Scholar
Hingrat, Y and Feer, F (2002) Effets de la fragmentation forestière sur l’activité des coléoptères coprophages: dispersion secondaire des graines en Guyane française. Revue d’Ecologie, Terre et Vie, Société Nationale de Protection de la Nature 8, 165179.Google Scholar
Huber, G and Schaub, C (2011) La Fertilité des Sols: L’importance de la Matière Organique. Alsace: Service Environnement-Innovation, pp. 42.Google Scholar
Janzen, DH (1982) Attraction of Liomys mice to horse dung and the extinction of this response. Animal Behaviour 30, 483489 CrossRefGoogle Scholar
Kasparek, M (2000). Cellule d’Aménagement du Parc National de Taï: Flore du Parc National de Taï. Manuel de Connaissance des Principales Plantes. Abidjan: CEDA.Google Scholar
Konaté, S and Kampmann, D (2010) Atlas de la Biodiversité de l’Afrique de l’Ouest, Tome III: Côte d’Ivoire. Druckerei Grammlich, Pliezhausen, Germany: Abidjan & Frankfurt/Main, pp. 526.Google Scholar
Kormos, R, Boesch, C, Bakarr, MI and Butynski, T (2004) Chimpanzés d’Afrique de l’Ouest. Etat de conservation de l’espèce et plan d’action. Groupe de spécialistes des primates de la CSE de l’UICN, Gland, Suisse et Cambridge, Royaume-Uni. ix + pp. 237.Google Scholar
Kouame, D, Koulibaly, AV, Gone bi, ZB, Kouassi, KH, Koffi, BJC and Adou Yao, CY (2017) Le rôle de dispersion des grands mammifères en forêts tropicales: cas de l’éléphant dans la dissémination et la régénération des plantes au Parc National d’Azagny, Sud de la Côte d’Ivoire. Afrique SCIENCE 13, 115129.Google Scholar
Laurance, WF, Useche, DC, Rendeiro, J, Kalka, M, Bradshaw, CJA, Sloan, SP, , SG, Campbell, M, Abernethy, K, Alvarez, P, , V, Ashton, P, Benítez-Malvido, J, Blom, A, Bobo, KS, Cannon, CH, Cao, M, Carroll R, , C, Coates, R, Cords, M, Danielsen F, De Dijn, B, Dinerstein, E, Donnelly, MA, Edwards, D, , F, , N, , P, , P-M, Foster, M, Gale, G, Harris, D, Harrison, R, Hart, J, Karpanty, S, Kress, WJ, Krishnaswamy, J, Logsdon, W, Lovett, J, , W, Maisels, F, Marshall, AR, McClearn, D, Mudappa, D, Nielsen, MR, , R, , N, van der Ploeg, J, Plumptre, A, Poulsen, J, Quesada, M, Rainey, H, Robinson, D, , C, , F, Scatena, F, Schulze, C, Sheil, D, Struhsaker, T, Terborgh, J, Thomas, D, Timm, R, Urbina-Cardona, JN, Vasudevan, K, , SJ, , JC, Arroyo, L, Ashton, M, Auzel, P, Babaasa, D, Babweteera, F, Baker, P, Banki, O, , M, , I, Blake, , Brockelman, , Brokaw, N, Brüh, CA, Bunyavejchewin, S, , J-T, Chave, J, Chellam, R, Clark, CJ, Clavijo, J, Congdon, R, , R, , HS, Dave, C, , G, Beisiege, BDM, Paes da Silva, RDN, , A, , A, Dirzo, R, Doran-Sheehy, D, Eaton, M, Emmons, L, Estrada, A, Ewango, C, , L, Feer, F, Fruth, B, Willis, JG, Goodale, U, Goodman, S, Guix, JC, Guthiga, P, Haber, W, Hamer, K, Herbinger, I, Hill, J, Huang, Z, Sun, IF, Ickes, K, Itoh, A, Ivanauskas, N, , B, , J, Janzen, D, Jiangming, M, Jin, C, Jones, T, Justiniano, H, Kalko, E, Kasangaki, , , T, King, , Klop, E, Knott, C, Koné, I, , E, Ribeiro, JLdS, Lattke, J, Laval, R, Lawton, R, Leal, M, Leighton, M, Lentino, M, Leonel, C, Lindsell, J, , L, , KE, , E, , A, Lwanga, J, Mack, AL, Martins, M, McGraw, WS, McNab, R, Montag, L, Thompson, JM, , J, , M, Nepal, S, Norconk, M, Novotny, V, O’Donnell, S, Opiang, M, Ouboter, P, Parker, K, , N, Pisciotta, K, Prawiradilaga, D, Pringle, C, Rajathurai, , , U, Reinartz, G, Renton, K, Reynolds, , Reynolds, V, Riley, E, , M-O, Rothman J, , P, Sakai, , Sanaiotti, T, Savini T, , G, , J, Siaka, A, Silman, MR, Smith, TB, , S, Sodhi, , , C, Stewart, K, Stokes, E, Stoner, KE, , R, Surbeck, M, Tobler, M, , T, , A, Umapathy, G, , M, Rivera, JV, , M, Venn, L, Verea, C, , C, Waltert, M, Wang, B, Watts, D, Weber, W, West, P, Whitacre, D, Whitney, K, Wilkie, D, , S, Wright, DD, , P, Xiankai, L, Yonzon, P and Zamzani, F (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294.CrossRefGoogle ScholarPubMed
Lazure, L and Almeida-Cortez, JS (2008) Impacts des mammifères néotropicaux sur les graines. Neotropical Biology and Conservation 1, 5161.Google Scholar
Li, BL and Foley, ME (1997) Genetic and molecular control of seed dormancy. Trends in Plant Science 2, 384389.CrossRefGoogle Scholar
Maraghni, M, Gorai, M and Neffati, M (2010) Seed germination at different temperatures and water stress levels, and seedling emergence from different depths of Ziziphus lotus . South African Journal of Botany 76, 453459.CrossRefGoogle Scholar
Midgley, JJ, White, JDM, Johnson, SD and Bronner, GN (2015) Faecal mimicry by seeds ensures dispersal by dung beetles. Nature Plants 1, 13.CrossRefGoogle ScholarPubMed
Medeton, B, Biaou, SSH, Ewedje, E-E and Natta, AK (2017) Potentiel semencier et contraintes à la régénération par graines de Haematostaphis barteri, espèce fruitière autochtone au Nord-Ouest Bénin. Annales de l’Université Parakou, Série Sciences Naturelles et Agronomie 7, 98103.Google Scholar
Nabuurs, GJ, Päivinen, R, Sikkema, R and Mohren, GMJ (1997) The role of European forests in the global carbon cycle – a review. Biomass and Bioenergy 13, 345358.CrossRefGoogle Scholar
Nasi, R, Taber, A and van Vliet, N (2011) Empty forests, empty stomachs? Bushmeat and livelihoods in the Congo and Amazon Basins. International Forestry Review 13, 355368.CrossRefGoogle Scholar
Nichols, E, Spector, S, Louzada, J, Larsen, T, Amezquita, S and Favila, ME (2008) Ecological functions and ecosystem provided by Scarabaeinae dung beetles. Biological Conservation 141, 14611474.CrossRefGoogle Scholar
Nivot, N (2005) Essais de germination et de bouturage de six espèces indigenes sciaphytes du Canada. Thèse. Université Laval, pp. 117.Google Scholar
N’guessan, KA, Boussou, KMR and Koffi, BJ-C (2021) Etude comparée de l’alimentation des chimpanzés ex-situ et en milieu naturel: cas du Zoo National d’Abidjan et du Parc National de Taï, Côte d’Ivoire. Afrique Science 19, 1424 Google Scholar
Païvinen, R, Pitkanen, J and Witt, R (1992) Mapping closed forest cover in West Africa, using NOAA/AVHRR-LAC data. Silva Carelica 21, 2751.Google Scholar
Petre, CA, Zinque, MH, Tagg, N, Beudels-Jamar, RC, Haurez, B, Josso, JF, Moretto, P and Doucet, JL (2015) Differences in dung beetle activity at western gorilla defecation sites in south-east Cameroon: implications for establishment of Uapaca spp. seedlings. Journal of Tropical Ecology 31, 165174 CrossRefGoogle Scholar
Pinta, M (1973) Méthodes de référence pour la détermination des éléments minéraux dans les végétaux determination des éléments Ca, Mg, Fe, Mn, Zn et Cu par absorption atomique. Extrait de Oléagineux 28, 8792.Google Scholar
R Core Team (2020) A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Randrianavosoa, H, Andrianoelina, O and Ramamonjisoa, L (2011) Tolérance à la dessiccation des graines d’Uapaca bojeri, Euphorbiaceae. International Journal of Biological and Chemical Sciences 5, 7279 CrossRefGoogle Scholar
République de Côte d’Ivoire (2018) Décret n° 2018-496 du 23 mai 2018 portant modification des limites du parc national de Taï. Journal official de la République de Côte d’Ivoire 12, 681683.Google Scholar
Russo, SE (2005) Linking seed fate to natural dispersal patterns: factors affecting predation and scatter-hoarding of Virola calophylla seeds in Peru. Journal of Tropical Ecology 21, 243253.CrossRefGoogle Scholar
Samuni, L, Crockford, C and Wittig, RM (2021) Group-level cooperation in chimpanzees is shaped by strong social ties. Nature Communications 12, 110.CrossRefGoogle ScholarPubMed
Shepherd, VE and Chapman, CA (1998) Dung beetles as secondary seed dispersers: impact on seed predation and germination. Journal of Tropical Ecology 14, 199215.CrossRefGoogle Scholar
Silue, PA, Kouassi, KE, Koffi, KAD and Soro, D (2017) Qualités germinatives des graines et croissance des plantules de Isoberlinia spp. en milieu contrôlé (pépinière). International Journal of Biological and Chemical Sciences 11, 93106.CrossRefGoogle Scholar
Snoeck, D, Koko, K, Joffre, J, Bastide, P and Jagoret, P (2015 ) Cacao nutrition and fertilization: relevant argronomic basics and fertilizer issues. Sustainable Agriculture Reviews 19, 40.Google Scholar
Tagg, N, Willie, J, Duarte, J, Petre, C-A and Fa, JE (2015). “Conservation research presence protects: a case study of great ape abundance in the Dja region, Cameroon.Animal Conservation 18, 489498.CrossRefGoogle Scholar
Tranquilli, S, Abedi-Lartey, M, Amsini, F, Arranz, L, Asamoah, A, Babafemi, O, Barakabuye, N, Campbell, G, , R, Davenport, TRB, Dunn, A, Dupain, J, Ellis, C, Etoga, G, Furuichi, , Gatti, S, Ghiurghi, A, , E, , C, Hart, J, , I, Hicks, TC, Holbech, LH, Huijbregts, B, Imong, I, Kumpel, N, Maisels, F, Marshall, P, Nixon, S, , E, Nziguyimpa, L, Nzooh-Dogmo, Z, Okon, DT, Plumptre, A, Rundus, A, Sunderland-Groves, J, Todd, A, Warren, Y, Mundry, R, Boesch, C and Kuehl, H. (2012) Lack of conservation effort rapidly increases African great ape extinction risk. Conservation Letters 5, 48–55.CrossRefGoogle Scholar
Traveset, A (1998) Effect of seed passage through vertebrate frugivores’ guts on germination: a review. Perspectives in Plant Ecology, Evolution and Systematics 1, 151190 CrossRefGoogle Scholar
Vincent, JP (1977) Interaction entre les micromammifères et la production de semences forestières. Annals of Forest Science 34, 7787.CrossRefGoogle Scholar
Vogt, KA, Grier, CC and Vogt, DJ (1986) Production, turnover, and nutrient dynamics of above and belowground deritus of world forests. Advances in Ecological Research 15, 303317.CrossRefGoogle Scholar
Vulinec, K (2000) Dung Beetles (Coleoptera: Scarabaeidae), monkeys, and conservation in Amazonia. Florida Entomologist 83, 229241.CrossRefGoogle Scholar
Vulinec, K, Lambert, JE and Mellow, DJ (2006) Primate dung beetle communities in secondary growth rain forests: implications for conservation of seed dispersal systems. International Journal of Primatology 27, 855879.CrossRefGoogle Scholar
Wandrag, EM, Dunham, AE, Duncan, RP and Rogers, HS (2017) Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings. Proceedings of the National Academy of Sciences of the United States of America 114, 1068910694.CrossRefGoogle ScholarPubMed
Wilkie, D and Carpenter, J (1999) Bushmeat hunting in the Congo Basin: an assessment of the impacts and options for mitigation. Biodiversity and Conservation 8, 927955.CrossRefGoogle Scholar
Supplementary material: Image

Koffi et al. supplementary material

Koffi et al. supplementary material

Download Koffi et al. supplementary material(Image)
Image 849.4 KB