Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T01:35:47.947Z Has data issue: false hasContentIssue false

Effects of bamboo dominance and palm-heart harvesting on the phylogenetic structure of the seed and seedling communities in an old-growth Atlantic Forest

Published online by Cambridge University Press:  26 September 2017

Daniella Schweizer
Affiliation:
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Florestais, Piracicaba, SP, Brazil
Débora Cristina Rother*
Affiliation:
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Biológicas, Piracicaba, SP, Brazil Universidade Federal do ABC, Santo André, SP, Brazil
Ana Elena Muler
Affiliation:
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Biológicas, Piracicaba, SP, Brazil
Ricardo Ribeiro Rodrigues
Affiliation:
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Biológicas, Piracicaba, SP, Brazil
Marco Aurélio Pizo
Affiliation:
Universidade Estadual Paulista, Departamento de Zoologia, Rio Claro, SP, Brazil
Pedro H. S. Brancalion
Affiliation:
Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Florestais, Piracicaba, SP, Brazil
*
*Corresponding author. Email: deborarother@gmail.com

Abstract:

A comprehensive assessment of the effect of disturbances on tropical and subtropical forests is needed to better understand their impacts on forest structure and diversity. Although taxonomic and functional diversity measures have been successfully adopted in this context, phylogenetic diversity metrics are still poorly explored. We compared the phylogenetic structure of the seed rain and regenerating seedling community in patches of an old-growth Atlantic Forest remnant dominated or not by a ruderal bamboo species, Guadua tagoara. We sampled those patches before and after illegal harvesting of the palm Euterpe edulis thus assessing if the harvesting led to changes in the phylogenetic structure of the seed rain and the regenerating community in both patches. Bamboo-dominated patches showed a significantly higher presence of species in the seed rain that were more distantly related to each other in the phylogeny than expected by chance compared with patches without bamboos, but this difference disappeared after palm-heart harvesting. Contrary to what we expected, we did not find significant changes in the phylogenetic structure of seedlings before or after palm-heart harvesting. The phylogenetic structure at the tips of the phylogeny was random overall. The maintenance of a higher presence of far relatives in the phylogeny of the seedling community suggests, assuming trait conservatism, that despite bamboo dominance and palm-heart harvesting, functional diversity is being preserved at least in the early regenerating stages and in the time frame of the study. However, higher presence of pioneer taxa after palm-heart harvest indicates that this disturbance may lead old-growth areas to earlier successional stages.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALVES, G. T. R. 2007. Aspectos da história de vida de Guadua tagoara (Nees) Kunth (Poaceae: Bambuseae) na Serra dos Órgãos, RJ. PhD Dissertation, Federal University of São Carlos, Brazil. https://repositorio.ufscar.br/handle/ufscar/1998.Google Scholar
ARROYO-RODRIGUEZ, V., MELO, F. P., MARTINEZ-RAMOS, M., BONGERS, F., CHAZDON, R. L., MEAVE, J. A., NORDEN, N., SANTOS, B. A., LEAL, I. R. & TABARELLI, M. 2015. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews 92:326340.Google Scholar
ASNER, G. P., RUDEL, T. K., AIDE, T. M., DEFRIES, R. & EMERSON, R. 2009. A contemporary assessment of change in humid tropical forests. Conservation Biology 23:13861395.CrossRefGoogle ScholarPubMed
BAETEN, L., DAVIES, T. J., VERHEYEN, C., VAN CALSTER, H. & VELLEND, M. 2015. Disentangling dispersal from phylogeny in the colonization capacity of forest understorey plants. Journal of Ecology 103:175183.CrossRefGoogle Scholar
CADOTTE, M. W., DINNAGE, R. & TILMAN, D. 2012. Phylogenetic diversity promotes ecosystem stability. Ecology 93:S223S233.Google Scholar
CRAVEN, D., FILOTAS, E., ANGERS, V. A. & MESSIER, C. 2016. Evaluating resilience of tree communities in fragmented landscapes: linking functional response diversity with landscape connectivity. Diversity Distributions 22:505518.Google Scholar
DÍAZ, S. & CABIDO, M. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16:646655.Google Scholar
DINNAGE, R. 2009. Disturbance alters the phylogenetic composition and structure of plant communities in an old field system. PLoS ONE 4:19.Google Scholar
FANTINI, A. C. & GURIES, R. P. 2007. Forest structure and productivity of palmiteiro (Euterpe edulis Martius) in the Brazilian Mata Atlântica. Forest Ecology and Management 242:185194.Google Scholar
FARAH, F. T., RODRIGUES, R. R., SANTOS, F. M., TAMASHIRO, J. Y., SHEPHERD, G. J., SIQUEIRA, T., BATISTA, J. L. F. & MANLY, B. J. F. 2014. Forest destructuring as revealed by the temporal dynamics of fundamental species – case study of Santa Genebra Forest in Brazil. Ecological Indicators 37:4044.Google Scholar
FLEMING, T. & WILLIAMS, C. F. 1990. Phenology, seed dispersal, and recruitment in Cecropia peltata (Moraceae) in Costa Rican tropical dry forest. Journal of Tropical Ecology 6:163178.Google Scholar
FREILICH, M. A. & CONNOLLY, S. R. 2015. Phylogenetic community structure when competition and environmental filtering determine abundances. Global Ecology and Biogeography 42:13901400.Google Scholar
GALETTI, M., ZIPPARRO, V. & MORELATTO, L. P. 1999. Fruit phenology and frugivory on the palm Euterpe edulis in a lowland Atlantic forest of Brazil. Ecotropica 5:115122.Google Scholar
GASTAUER, M. & MEIRA-NETO, J. A. A. 2013. Avoiding inaccuracies in tree calibration and phylogenetic community analysis using Phylocom 4.2. Ecological Informatics 15:8590.Google Scholar
GERHOLD, P., CAHILL, J. F., WINTER, M., BARTISH, I. V. & PRINZING, A. 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology 29:600614.Google Scholar
GODOY, O., KRAFT, N. J. B. & LEVINE, J. M. 2014. Phylogenetic relatedness and the determinants of competitive outcomes. Ecology Letters 17:836844.Google Scholar
GRISCOM, B. W. & ASHTON, M. S. 2003. Bamboo control of forest succession: Guadua sarcocarpa in Southeastern Peru. Forest Ecology and Management 175:445454.Google Scholar
GROMBONE-GUARATINI, M. T., JESSEN, R. C., CARDOSO-LOPES, E. M. & TORRES, L. M. B. 2009. Allelopathic potential of Aulonemia aristulata (Doll) MacClure, a native bamboo of Atlantic Rain Forest. Allelopathy Journal 24:183190.Google Scholar
GUILHERME, F. A. G., OLIVEIRA-FILHO, A. T., APPOLINÁRIO, V. & BEARZOTI, E. 2004. Effects of flooding regime and woody bamboos on tree community dynamics in a section of tropical semideciduous forest in South-Eastern Brazil. Plant Ecology 174:1936.Google Scholar
HARDY, O. J. 2008. Testing the spatial phylogenetic structure of local communities: statistical performances of different null models and test statistics on a locally neutral community. Journal of Ecology 96:914926.Google Scholar
LAURANCE, W. F., ANDRADE, A. S., MAGRACH, A., CAMARGO, J. L. C., VALSKO, J. J., CAMPBELL, M., FEARNSIDE, P. M., EDWARDS, W., LOVEJOY, T. E. & LAURANCE, S. G. 2014. Long-term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Science 95:16041611.Google Scholar
LI, S. P., CADOTTE, M. W., MEINERS, S. J., HUA, Z., JIANG, L. & SHU, W. S. 2015. Species colonization, not competitive exclusion, drives community overdispersion over long-term succession. Ecology Letters 18:964973.Google Scholar
LIMA, R. A. F., DITTRICH, V. A. O., SALINO, A. B., BREIER, T. B. & AGUIAR, O. T. 2011. Flora vascular do Parque Estadual Carlos Botelho, São Paulo, Brasil. Biota Neotropica 11:173214.Google Scholar
LIMA, R. A. F., ROTHER, D. C., MULER, A. E., LEPSCH, I. F. & RODRIGUES, R. R. 2012. Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biological Conservation 147:3239.Google Scholar
MANEL, S., COUVREUR, T. L. P., MUNOZ, F., COUTERON, P., HARDY, O. J. & SONKÉ, B. 2014. Characterizing the phylogenetic tree community structure of a protected tropical rain forest area in Cameroon. PLoS ONE 9:112.Google Scholar
MULER, A. E., ROTHER, D. C., BRANCALION, P. H. S., NAVES, R. P., RODRIGUES, R. R. & PIZO, M. A. 2014. Can overharvesting of a non-timber-forest-product change the regeneration dynamics of a tropical rainforest? The case study of Euterpe edulis . Forest Ecology and Management 324:117125.Google Scholar
MUNGUÍA-ROSAS, M. A., JURADO-DZIB, S. G., MEZETA-COB, C. R., MONTIEL, S., ROJAS, A. & PECH-CANCHÉ, J. M. 2014. Continuous forest has greater taxonomic, functional, and phylogenetic plant diversity than an adjacent naturally fragmented forest. Journal of Tropical Ecology 30:323333.Google Scholar
OLIVEIRA-FILHO, A. T., VILELA, E. A., GAVILANES, M. L. & CARVALHO, D. A. 1994. Effect of flooding regime and understorey bamboos on the physiognomy and tree species composition of a tropical semideciduous forest in southeastern Brazil. Plant Ecology 113:99124.Google Scholar
RIBEIRO, M. C., METZGER, J. P., MARTENSEN, A. C., PONZONI, F. J. & HIROTA, M. M. 2009. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142:11411153.Google Scholar
ROTHER, D. C., RODRIGUES, R. R. & PIZO, M. A. 2009. Effects of bamboo stands on seed rain and seed limitation in a rainforest. Forest Ecology and Management 257:885892.CrossRefGoogle Scholar
ROTHER, D. C., ALVES, K. J. F. & PIZO, M. A. 2013. Avian assemblages in bamboo and non-bamboo habitats in a tropical rainforest. Emu 113:5261.Google Scholar
ROTHER, D. C., RODRIGUES, R. R. & PIZO, M. A. 2016a. Bamboo thickets alter the demographic structure of Euterpe edulis population: a keystone, threatened palm species of the Atlantic forest. Acta Oecologica 70:96102.Google Scholar
ROTHER, D. C., PIZO, M. A. & JORDANO, P. 2016b. Variation in seed dispersal effectiveness: the redundancy of consequences in diversified tropical frugivore assemblages. Oikos 125:336342.Google Scholar
SCHNITZER, S. A., DALLING, J. W. & CARSON, W. P. 2000. The impact of lianas on tree regeneration in canopy gaps: evidence for an alternative pathway of gap-phase regeneration. Journal of Ecology 88:655666.Google Scholar
STEVENS, R. D., GAVILANEZ, M. M., TELLO, J. S. & RAY, D. A. 2012. Phylogenetic structure illuminates the mechanistic role of environmental heterogeneity in community organization. Journal of Animal Ecology 81:455462.Google Scholar
SWENSON, N. 2011. The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional, and phylogenetic biodiversity. American Journal of Botany 98:472480.Google Scholar
TABANEZ, A. A. J. & VIANA, V. M. 2000. Patch structure within Brazilian Atlantic Forest fragments and implications for conservation. Biotropica 32:925933.Google Scholar
TAN, J. Q., PU, Z. C., RYBERG, W. A. & JIANG, L. 2012. Species phylogenetic relatedness, priority effects, and ecosystem functioning. Ecology 93:11641172.CrossRefGoogle ScholarPubMed
VANDERLOOK, F., VERDÚ, M. & HONNAY, O. 2012. The role of seed traits in determining the phylogenetic structure of temperate plant communities. Annals of Botany 110:18.Google Scholar
VELOSO, H. P. & GÓES FILHO, L. 1982. Fitogeografia brasileira: classificação fisionômica-ecológica da vegetação neotropical. Boletim Técnico Projeto RADAMBRASIL. Série Vegetação, 1. Ministério das Minas e Energia, Salvador.Google Scholar
WEBB, C. O. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. American Naturalist 156:145155.Google Scholar
WEBB, C. O., ACKERLY, D. D. & KEMBEL, S. W. 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:20982100.Google Scholar
WIKSTROM, N., SAVOLAINEN, V. & CHASE, M. W. 2001. Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London 268:22112220.Google Scholar