Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T06:00:49.926Z Has data issue: false hasContentIssue false

Effect of fire regime on the grass community of the humid savanna of Lamto, Ivory Coast

Published online by Cambridge University Press:  11 December 2018

Kouamé Fulgence Koffi*
Affiliation:
UFR des Sciences de la Nature, Station d’Ecologie de Lamto/CRE, Pôle de Recherche Environnement et Développement Durable, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire Sorbonne Université, UMR 7618 IEES-Paris (IRD, CNRS, Université Paris Diderot, UPEC, INRA), 6 Place Jussieu, 75005, Paris, France
Aya Brigitte N’Dri
Affiliation:
UFR des Sciences de la Nature, Station d’Ecologie de Lamto/CRE, Pôle de Recherche Environnement et Développement Durable, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire
Jean-Christophe Lata
Affiliation:
Sorbonne Université, UMR 7618 IEES-Paris (IRD, CNRS, Université Paris Diderot, UPEC, INRA), 6 Place Jussieu, 75005, Paris, France Department of Geoecology and Geochemistry, Institute of Natural Resources, Tomsk Polytechnic University, 30, Lenin Street, 634050, Tomsk, Russia
Souleymane Konaté
Affiliation:
UFR des Sciences de la Nature, Station d’Ecologie de Lamto/CRE, Pôle de Recherche Environnement et Développement Durable, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire
Tharaniya Srikanthasamy
Affiliation:
Sorbonne Université, UMR 7618 IEES-Paris (IRD, CNRS, Université Paris Diderot, UPEC, INRA), 6 Place Jussieu, 75005, Paris, France
Marcel Konan
Affiliation:
UFR des Sciences de la Nature, Station d’Ecologie de Lamto/CRE, Pôle de Recherche Environnement et Développement Durable, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d’Ivoire
Sébastien Barot
Affiliation:
Sorbonne Université, UMR 7618 IEES-Paris (IRD, CNRS, Université Paris Diderot, UPEC, INRA), 6 Place Jussieu, 75005, Paris, France

Abstract

This study assesses the impact of four fire treatments applied yearly over 3 y, i.e. early fire, mid-season fire, late fire and no fire treatments, on the grass communities of Lamto savanna, Ivory Coast. We describe communities of perennial tussock grasses on three replicated 5 × 5-m or 10 × 5-m plots of each fire treatment. Tussock density did not vary with fire treatment. The relative abundance of grass species, the circumference of grass tussocks and the probability of having a tussock with a central die-back, varied with fire treatment. Mid-season fire had the highest proportion of tussocks with a central die-back while the late fire had the smallest tussocks. Tussock density, circumference, relative abundance and probability of having a central die-back varied with species. Andropogon canaliculatus and Hyparrhenia diplandra were the most abundant of the nine grass species. They had the largest tussocks and the highest proportion of tussock with a central die-back. Loudetia simplex was the third most abundant species but was very rare in no fire plots. The distribution of tussock circumferences was right skewed and dominated by small tussocks. The proportion of the tussocks with a central die-back strongly increased with circumference, which could lead to tussock fragmentation. Taken together, this study suggests that fire regimes impact grass demography and that this impact depends on grass species and tussock size.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature cited

Abbadie, L, Gignoux, J, Le Roux, X and Lepage, M (eds) (2006a) Lamto: Structure, Functioning and Dynamics of a Savanna Ecosystem. New York: Springer, 422 pp.CrossRefGoogle Scholar
Abbadie, L, Gignoux, J, Lepage, M and Roux, XL (2006b) Environmental constraints on living organisms. In Abbadie, L, Gignoux, J, Roux, XL and Lepage, M (eds), Lamto: Structure, Functioning and Dynamics of a Savanna Ecosystem. New York: Springer, pp. 4561.CrossRefGoogle Scholar
Adachi, N, Terashima, I and Takahashi, M (1996) Mechanisms of central die-back of Reynoutria japonica in the volcanic desert on Mt. Fuji: a stochastic model analysis of rhizome growth. Annals of Botany 78, 169179.CrossRefGoogle Scholar
Andersen, AN, Cook, GD and Williams, RJ (eds) (2003) Synthesis: fire ecology and adaptive conservation management. In Fire in Tropical Savannas. New York: Springer, pp. 153164.CrossRefGoogle Scholar
Barot, S and Gignoux, J (2004) Mechanisms promoting plant coexistence: can all the proposed processes be reconciled? Oikos 106, 185192.CrossRefGoogle Scholar
Bond, WJ (2008) What limits trees in C4 grasslands and savannas? Annual Review of Ecology, Evolution, and Systematics 39, 641659.CrossRefGoogle Scholar
Bruzon, V (1994) Les pratiques du feu en Afrique subhumide, exemples des milieux savanicoles de la Centrafrique et de la Côte d’Ivoire. In Blanc-Pamard, C and Boutrais, J (eds), Dynamique des systèmes agraires: à la croisée des parcours pasteurs, éleveurs, cultivateurs. Paris: ORSTOM, pp. 147163.Google Scholar
Bruzon, V (1995) Les feux de brousse dans les savanes africaines. In Daget, P and Godron, M (eds), Pastoralisme: Troupeaux, Espaces et Sociétés. Paris: HATIER-AUPELF, UREF, pp. 269282.Google Scholar
Brys, R, Jacquemyn, H and De Blust, G (2005) Fire increases aboveground biomass, seed production and recruitment success of Molinia caerulea in dry heathland. Acta Oecologica 28, 299305.CrossRefGoogle Scholar
Cartenì, F, Marasco, A, Bonanomi, G, Mazzoleni, S, Rietkerk, M and Giannino, F (2012) Negative plant soil feedback explaining ring formation in clonal plants. Journal of Theoretical Biology 313, 153161.CrossRefGoogle ScholarPubMed
Caswell, H (1989) Matrix Population Models. Sunderland, MA: Sinauer Associates, 328 pp.Google Scholar
Danin, A and Orshan, G (1995) Circular arrangement of Stipagrostis ciliata clumps in the Negev, Israel and near Gokaeb, Namibia. Journal of Arid Environments 30, 307313.CrossRefGoogle Scholar
Durand, J, Garnier, L, Dajoz, I, Mousset, S and Veuille, M (2000) Gene flow in a facultative apomictic Poacea, the savanna grass Hyparrhenia diplandra. Genetics 156, 823831.Google Scholar
Ekblom, A and Gillson, L (2010) Fire history and fire ecology of Northern Kruger (KNP) and Limpopo National Park (PNL), Southern Africa. The Holocene 20, 10631077.CrossRefGoogle Scholar
Garnier, LKM and Dajoz, I (2001) The influence of fire on the demography of a dominant grass species of West African savannas, Hyparrhenia diplandra. Journal of Ecology 89, 200208.CrossRefGoogle Scholar
Gignoux, J, Dajoz, I, Durand, J, Garnier, L and Veuille, M (2006) Spatial pattern, dynamics, and reproductive biology of the grass community. In Abbadie, L, Gignoux, J, Le Roux, X and Lepage, M (eds), Lamto: Structure, Functioning and Dynamics of a Savanna Ecosystem. New York: Springer, pp. 315334.CrossRefGoogle Scholar
Gignoux, J, Lahoreau, G, Julliard, R and Barot, S (2009) Establishment and early persistence of tree seedlings in an annually burned savanna. Journal of Ecology 97, 484495.CrossRefGoogle Scholar
Gittins, C, Ghermandi, L and Bran, D (2011) Studying the post-fire performance of tussock grasses in Patagonia: survival, biomass production and early competition. Journal of Arid Environments 75, 986990.CrossRefGoogle Scholar
Govender, N, Trollope, WSW and Van Wilgen, BW (2006) The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa: fire intensity in savanna. Journal of Applied Ecology 43, 748758.CrossRefGoogle Scholar
Hutchings, MJ (1996) The structure of plant populations. In Crawley, MJ (ed), Plant Ecology. Oxford: Blackwell Publishing, pp. 325358.CrossRefGoogle Scholar
Keeley, JE, Pausas, JG, Rundel, PW, Bond, WJ and Bradstock, RA (2011) Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16, 406411.CrossRefGoogle ScholarPubMed
Lamotte, M and Tireford, JL (1988) Le climat de savane de Lamto (Côte d’Ivoire) et sa place dans les climats de l’Ouest Africain. Abidjan: Travaux des chercheurs de Lamto, Côte d’Ivoire, 146 pp.Google Scholar
Lata, JC, Guillaume, K, Degrange, V, Abbadie, L and Lensi, R (2000) Relationships between root density of the African grass Hyparrhenia diplandra and nitrification at the decimetric scale: an inhibition stimulation balance hypothesis. Proceedings of the Royal Society of London B: Biological Sciences 267, 595600.CrossRefGoogle ScholarPubMed
Lewis, JP, Stofella, SL and Feldman, SR (2001) Monk’s tonsure-like gaps in the tussock grass Spartina argentinensis (Gramineae). Revista de Biología Tropical 49, 313316.Google Scholar
Mbatha, KR and Ward, D (2010) The effects of grazing, fire, nitrogen and water availability on nutritional quality of grass in semi-arid savanna, South Africa. Journal of Arid Environments 74, 12941301.CrossRefGoogle Scholar
Menaut, J-C and Abbadie, L (2006) Vegetation. In Abbadie, L, Gignoux, J, Le Roux, X and Lepage, M (eds), Lamto: Structure, Functioning and Dynamics of a Savanna Ecosystem. New York: Springer, pp. 6374.CrossRefGoogle Scholar
Monnier, Y (1968) Les effets des feux de brousse sur une savane préforestière de Côte-d’Ivoire. Abidjan: Ministère de l’éducation nationale de la République de Côte-d’Ivoire, 260 pp.Google Scholar
Morgan, JW and Lunt, ID (1999) Effects of time-since-fire on the tussock dynamics of a dominant grass (Themeda triandra) in a temperate Australian grassland. Biological Conservation 88, 379386.CrossRefGoogle Scholar
N’Dri, AB, Soro, TD, Gignoux, J, Dosso, K, Koné, M, N’Dri, JK, Koné, NA and Barot, S (2018) Season affects fire behavior in annually burned humid savanna of West Africa. Fire Ecology 14, 111.CrossRefGoogle Scholar
Platt, WJ, Orzell, SL and Slocum, MG (2015) Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes. PLoS ONE 10, 128.CrossRefGoogle ScholarPubMed
Ravi, S, D’Odorico, P, Wang, L and Collins, S (2008) Form and function of grass ring patterns in arid grasslands: the role of abiotic controls. Oecologia 158, 545555.CrossRefGoogle ScholarPubMed
Sheffer, E, Yizhaq, H, Gilad, E, Shachak, M and Meron, E (2007) Why do plants in resource-deprived environments form rings? Ecological Complexity 4, 192200.CrossRefGoogle Scholar
Sosef, MSM (2016) Taxonomic novelties in Central African grasses (Poaceae), Paniceae 1. Plant Ecology and Evolution 149, 356365.CrossRefGoogle Scholar
Srikanthasamy, T, Leloup, J, N’Dri, AB, Barot, S, Gervaix, J, Koné, AW, Koffi, KF, Le Roux, X, Raynaud, X and Lata, J-C (2018) Contrasting effects of grasses and trees on microbial N-cycling in an African humid savanna. Soil Biology and Biochemistry 117, 153163.CrossRefGoogle Scholar
Wan, C and Sosebee, RE (2000) Central dieback of the dryland bunchgrass Eragrostis curvula (weeping lovegrass) re-examined: the experimental clearance of tussock centres. Journal of Arid Environments 46, 6978.CrossRefGoogle Scholar
Wikberg, S and Mucina, L (2002) Spatial variation in vegetation and abiotic factors related to the occurrence of a ring-forming sedge. Journal of Vegetation Science 13, 677684.CrossRefGoogle Scholar
Williams, RJ, Gill, AM and Moore, PHR (1998) Seasonal changes in fire behaviour in a tropical savanna in Northern Australia. International Journal of Wildland Fire 8, 227239.CrossRefGoogle Scholar
Williams, RJ, Müller, WJ, Wahren, C-H, Setterfield, SA and Cusack, J (2003) Vegetation. In Andersen, AN, Cook, GD and Williams, RJ (eds), Fire in Tropical Savannas. New York: Springer, pp. 79106.CrossRefGoogle Scholar
Yuan, J, Liang, D and Zhang, S (2016) Litter and its interaction with standing vegetation affect seedling recruitment in Tibetan alpine grasslands. Plant Ecology and Diversity 9, 8995.CrossRefGoogle Scholar