Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T05:20:47.808Z Has data issue: false hasContentIssue false

Corridor- and stopover-use of the Hawaiian goose (Branta sandvicensis), an intratropical altitudinal migrant

Published online by Cambridge University Press:  13 December 2013

Christina R. Leopold
Affiliation:
Hawai‘i Cooperative Studies Unit, University of Hawai‘i at Hilo, P.O. Box 44, Hawai‘i National Park, HI, 96718, USA
Steven C. Hess*
Affiliation:
Pacific Island Ecosystems Research Center, U.S. Geological Survey, Kīlauea Field Station, P.O. Box 44, Hawai‘i National Park, HI, 96718, USA
*
1Corresponding author. Email: shess@usgs.gov

Abstract:

We outfitted six male Hawaiian geese, or nene (Branta sandvicensis), with 45-g solar-powered satellite transmitters and collected four location coordinates d−1 from 2010 to 2012. We used 6193 coordinates to characterize migration corridors, habitat preferences and temporal patterns of displacement for 16 migration events with Brownian bridge utilization distributions (BBUD). We used 1552 coordinates to characterize stopovers from 37 shorter-distance movement events with 25% BBUDs. Two subpopulations used a well-defined common migration corridor spanning a broad gradient of elevation. Use of native-dominated subalpine shrubland was 2.81 times more likely than the availability of this land-cover type. The nene differed from other tropical and temperate-zone migrant birds in that: (1) migration distance and the number of stopovers were unrelated (Mann–Whitney test W = 241, P < 0.006), and; (2) individual movements were not unidirectional suggesting that social interactions may be more important than refuelling en route; but like other species, nene made more direct migrations with fewer stopovers in return to breeding areas (0.58 ± 0.50) than in migration away from breeding areas (1.64 ± 0.48). Our findings, combined with the direction and timing of migration, which is opposite that of most other intratropical migrants, suggest fundamentally different drivers of altitudinal migration.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013. This is a work of the U.S. Government and is not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALERSTAM, T., HAKE, M. & KJELLÉN, N. 2006. Temporal and spatial patterns of repeated journeys by ospreys: implications for strategies and navigation in bird migration. Animal Behaviour 71:555566.CrossRefGoogle Scholar
BALDWIN, P. H. 1945. The Hawaiian Goose, its distribution and reduction in numbers. Condor 47:2737.CrossRefGoogle Scholar
BANKO, P. C., BLACK, J. M. & BANKO, W. E. 1999. Hawaiian Goose (Nēnē) (Branta sandvicensis). No. 434 in Poole, A. & Gill, F. (eds.). The birds of North America. Academy of Natural Sciences, Philadelphia, and American Ornithologists’ Union, Washington, DC.Google Scholar
BATBAYAR, N., TAKEKAWA, J. Y., NEWMAN, S. H., PROSSER, D. J., NATSAGJORJ, T. & XIAO, X. 2011. Migration strategies of Swan Geese Anser cygnoides from northeast Mongolia. Wildfowl 61:90109.Google Scholar
BENNETT, A. F. 2003. Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. IUCN, Gland and Cambridge. 254 pp.Google Scholar
BERGER, J., CAIN, S. L. & BERGER, J. M. 2006. Connecting the dots: an invariant migration corridor links the Holocene to the present. Biology Letters 2:528531.CrossRefGoogle ScholarPubMed
BONTER, D. N., GAUTHREAUX, S. A. & DONOVAN, T. M. 2008. Characteristics of important stopover locations for migrating birds: remote sensing with radar in the Great Lakes Basin. Conservation Biology 23:440448.CrossRefGoogle ScholarPubMed
BÖRGER, L., DALZIEL, B. D. & FRYXELL, J. M. 2008. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecology Letters 11:637650.CrossRefGoogle ScholarPubMed
BOYLE, W. A. 2008. Can variation in risk of nest predation explain altitudinal migration in tropical birds? Oecologia 154:397403.CrossRefGoogle Scholar
BOYLE, W. A. 2010. Does food abundance explain altitudinal migration in a tropical frugivorous bird? Canadian Journal of Zoology 88:204213.CrossRefGoogle Scholar
BOYLE, W. A. & CONWAY, C. J. 2007. Why migrate? A test of the evolutionary precursor hypothesis. American Naturalist 169:344359.CrossRefGoogle ScholarPubMed
BOYLE, W. A., NORRIS, D. R. & GUGIELMO, C. G. 2010. Storms drive altitudinal migration in a tropical bird. Proceedings of the Royal Society, Series B 277:25112519.Google Scholar
BULLARD, F. 1999. Estimating the home range of an animal: a Brownian bridge approach. M.S. Thesis, University of North Carolina, Chapel Hill.Google Scholar
BUNNEFELD, N., BÖRGER, L., VAN MOORTER, B., ROLANDSEN, C. M., DETTKI, H., SOLBERG, E. J. & ERICSSON, G. 2011. A model-driven approach to quantify migration patterns: individual, regional, and yearly differences. Journal of Animal Ecology 80:466476.CrossRefGoogle ScholarPubMed
CHESSER, R. T. 1994. Migration in South America: an overview of the austral system. Bird Conservation International 4:91107.CrossRefGoogle Scholar
CORNETT, C. R. 2011. Habitat selection of the endangered Hawaiian Goose: a multi-scale approach. M.S. thesis, University of Hawai‘i, Hilo.Google Scholar
DAVENPORT, L. C., NOLE BAZÁN, I. & CARLOS ERAZO, N. 2012. East with the night: longitudinal migration of the Orinoco goose (Neochen jubata) between Manú National Park, Peru and the Llanos de Moxos, Bolivia. PLoS One 7:e46886.CrossRefGoogle Scholar
DINGLE, H. & DRAKE, V. A. 2007. What is migration? BioScience 57:113121.CrossRefGoogle Scholar
ERNI, B., LIECHTI, F. & BRUDERER, B. 2002. Stopover strategies in passerine bird migration: a simulation study. Journal of Theoretical Biology 219:479493.CrossRefGoogle ScholarPubMed
HENSHAW, H. W. 1902. Birds of the Hawaiian Islands, being a complete list of the birds of the Hawaiian possessions with notes on their habits. Thrum, Honolulu. 146 pp.Google Scholar
HESS, S. C. 2011. The Nēnē: Hawaii's iconic goose. A mixed bag of successes, setbacks, and uncertainty. The Wildlife Professional 5:5659.Google Scholar
HESS, S. C., LEOPOLD, C. R., MISAJON, K., HU, D. & JEFFREY, J. J. 2012. Restoration of movement patterns of the Hawaiian Goose. Wilson Journal of Ornithology 124:478486.CrossRefGoogle Scholar
HOBSON, K. A., WASSENAAR, L. I., MILÁ, B., LOVETTE, I., DINGLE, C. & SMITH, T. B. 2003. Stable isotopes as indicators of altitudinal distributions and movements in an Ecuadorean hummingbird community. Oecologia 136:302308.CrossRefGoogle Scholar
JOHNSON, D. N. & MACLEAN, G. L. 1994. Altitudinal migration in Natal. Ostrich 65:8694.CrossRefGoogle Scholar
KAREIVA, P. M. & SHIGESADA, N. 1983. Analyzing insect movement as a correlated random walk. Oecologia 56:234238.CrossRefGoogle ScholarPubMed
KRUCKENBERG, H. & BORBACH-JAENE, J. 2004. Do greylag geese (Anser anser) use traditional roosts? Site fidelity of colour-marked Nordic greylag geese during spring migration. Journal of Ornithology 145:117122.CrossRefGoogle Scholar
LEOPOLD, C. R. & HESS, S. C. 2013. Multi-scale habitat selection of the endangered Hawaiian Goose. Condor 115:1727.CrossRefGoogle Scholar
LOISELLE, B. A. & BLAKE, J. G. 1991. Temporal variation in birds and fruits along an elevational gradient in Costa Rica. Ecology 72:180193.CrossRefGoogle Scholar
MOWBRAY, T. B., ELY, C. R., SEDINGER, J. S. & TROST, R. E. 2002. Canada Goose (Branta canadensis). No. 682 in Poole, A. & Gill, F. (eds.). The birds of North America. Academy of Natural Sciences, Philadelphia, and American Ornithologists’ Union, Washington, DC.Google Scholar
NEWTON, I. 2008. The migration ecology of birds. Elsevier, San Diego. 984 pp.Google Scholar
O’REILLY, K. M. & WINGFIELD, J. C. 1995. Spring and autumn migration in Arctic shorebirds: same distance, different strategies. American Zoologist 35:222233.CrossRefGoogle Scholar
ORNELAS, J. F. & ARIZMENDI, M. D. C. 1995. Altitudinal migration: implications for the conservation of the neotropical migrant avifauna of western Mexico. Pp. 98109 in Wilson, M. H. & Sader, A. (ed.). Conservation of neotropical migratory birds in Mexico. Maine Agricultural and Forest Experiment Station, Orono.Google Scholar
PAXINOS, E. E., JAMES, H. F., OLSON, S. L., SORENSON, M. D., JACKSON, J. & FLEISCHER, R. C. 2002. mtDNA from fossils reveals a radiation of Hawaiian Geese recently derived from the Canada Goose (Branta canadensis). Proceedings of the National Academy of Sciences USA 99:13991404.CrossRefGoogle Scholar
PERKINS, R. C. L. 1903. Vertebrata. Pp. 365466 in Sharp, D. (ed.). Fauna hawaiiensis. Cambridge University Press, Cambridge.Google Scholar
POWELL, G. V. N. & BJORK, R. D. 2004. Habitat linkages and the conservation of tropical biodiversity as indicated by seasonal migrations of three-wattled Bellbirds. Conservation Biology 18:500509.CrossRefGoogle Scholar
PROSSER, D. J., CUI, P., TAKEKAWA, J. Y., TANG, M., HOU, Y., COLLINS, B. M., PAN, B., HILL, N. J., LI, T., LI, Y., LEI, F., GUO, S., XING, Z., HE, Y., ZHOU, Y., DOUGLAS, D. C., PERRY, W. M. & NEWMAN, S. H. 2011. Wild bird migration across the Qinghai-Tibetan Plateau: a transmission route for highly pathogenic H5N1. PLoS One 6:e17622.CrossRefGoogle Scholar
PULIDO, F. 2007. The genetics and evolution of avian migration. BioScience 57:165174.CrossRefGoogle Scholar
ROBERTSON, G. J. & COOKE, F. 1999. Winter philopatry in migratory waterfowl. Auk 116:2034.CrossRefGoogle Scholar
SAWYER, H. & KAUFFMAN, M. J. 2011. Stopover ecology of a migratory ungulate. Journal of Animal Ecology 80:10781087.CrossRefGoogle ScholarPubMed
SAWYER, H., KAUFFMAN, M. J., NIELSON, R. M. & HORNE, J. S. 2009. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecological Applications 19:20162025.CrossRefGoogle ScholarPubMed
SMITH, J. D. 1952. The Hawaiian Goose (Nene) restoration plan. Journal of Wildlife Management 16:19.CrossRefGoogle Scholar
STILES, F. G. 1988. Altitudinal movements of birds on the Caribbean slope of Costa Rica: implications for conservation. Pp. 243258 in Alameda, F. & Pringle, C. M. (eds.). Tropical rainforests: diversity and conservation. California Academy of Sciences, San Francisco.Google Scholar
STYRSKY, J. D., BERTHOLD, P. & ROBINSON, W. D. 2004. Endogenous control of migration and calendar effects in an intratropical migrant, the yellow-green vireo. Animal Behaviour 67:11411149.CrossRefGoogle Scholar
SUTHERLAND, W. J. 1998. Evidence for flexibility and constraint in migration systems. Journal of Avian Biology 29:441446.CrossRefGoogle Scholar
UEZU, A., METZGER, J. P. & VIELLIARD, J. M. E. 2005. Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic forest bird species. Biological Conservation 123:507519.CrossRefGoogle Scholar
U. S. DEPARTMENT OF INTERIOR (USDI). 2004. Draft revised recovery plan for the Nēnē or Hawaiian Goose (Branta sandvicensis). USDI, Fish & Wildlife Service, Portland.Google Scholar
VAN DER GRAAF, A., STAHL, J. J., KLIMKOWSKA, A., BAKKER, J. P. & DRENT, R. H. 2006. Surfing the green wave – how plant growth drives spring migration in the Barnacle Goose (Branta leucopsis). Ardea 94:567577.Google Scholar
VAN WIJK, R. E., KOLZSCH, A., KRUCKENBERG, H., EBBINGE, B. S., MUSKENS, G. J. D. M. & NOLET, B. A. 2011. Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121:655664.CrossRefGoogle Scholar
WEBER, T. P., ENS, B. J. & HOUSTON, A. I. 1998. Optimal avian migration: a dynamic model of fuel stores and site use. Evolutionary Ecology 12:377401.CrossRefGoogle Scholar