Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T10:01:21.283Z Has data issue: false hasContentIssue false

Continuous forest has greater taxonomic, functional and phylogenetic plant diversity than an adjacent naturally fragmented forest

Published online by Cambridge University Press:  07 May 2014

Miguel A. Munguía-Rosas*
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mérida 97310, México
Selmy G. Jurado-Dzib
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mérida 97310, México
Candy R. Mezeta-Cob
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mérida 97310, México
Salvador Montiel
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mérida 97310, México
Armando Rojas
Affiliation:
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mérida 97310, México
Juan M. Pech-Canché
Affiliation:
Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Tuxpan 92850, México
*

Abstract:

Several studies have evaluated the short-term effects of tropical forest fragmentation on plant taxonomic diversity, while only a few have evaluated its effects on functional or phylogenetic diversity. To our knowledge no study has looked at the long-term consequences of tropical forest fragmentation on the three main components of plant diversity simultaneously: taxonomic, functional and phylogenetic diversity. We sampled the vascular flora using belt transects (50 × 4 m) in a continuous tropical semi-evergreen forest (16 transects) and in an adjacent naturally fragmented forest (fragments of 1.7-My-old semi-evergreen forest immersed in a mangrove/sedge matrix) (18 transects), and compared their taxonomic, functional and phylogenetic plant diversity. There were 36 species in the continuous forest and 28 in the fragmented forest. Continuous forest was taxonomically more diverse (25%) than the fragmented forest. All functional diversity metrics were greater (6–33%) in the continuous than in the fragmented forest. Phylogenetic diversity was 19% greater and phylogenetically more overdispersed in the continuous forest than in the fragmented forest. The results suggest that in the fragmented forest not only is taxonomic plant diversity lower, but functional and phylogenetic diversity are as well. The negative effects of forest fragmentation on plant diversity seem to be chronic.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

APG (Angiosperm Phylogeny Group). 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161:105121.Google Scholar
ARROYO-RODRÍGUEZ, V., PINEDA, E., ESCOBAR, F. & BENÍTEZ-MALVIDO, J. 2008. Value of small patches in the conservation of plant-species diversity in highly fragmented rainforest. Conservation Biology 23:729739.Google Scholar
ARROYO-RODRÍGUEZ, V., CAVENDER-BARES, J., ESCOBAR, F., MELO, F. P. L., TABARELLI, M. & SANTOS, B. 2012. Maintenance of tree phylogenetic diversity in a highly fragmented rain forest. Journal of Ecology 100:702711.Google Scholar
BALUN, L. B. 2011. Functional diversity of the hyper-diverse mangrove communities in Papua New Guinea. PhD dissertation, University of Tennessee, Knoxville. 321 pp.Google Scholar
BARRAGÁN, F., MORENO, C. E., ESCOBAR, F., HALFFTER, G. & NAVARRETE, D. 2011. Negative impacts of human land use on dung beetle functional diversity. PloS One 6: e17976.Google Scholar
BARRERA, A. 1982. Los petenes del noroeste de Yucatán: su exploración ecológica en perspectiva. Biótica 2:163169.Google Scholar
BOTTA-DUKÁT, Z. 2005. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16:533540.Google Scholar
BROKAW, N., BONILLA, N., KNAPP, S., MACVEAN, A., ORTÍZ, J. J., PEÑA-CHAMORRO, M., PÖLL, E. & TUN-GARRIDO, J. 2011. Arboles del mundo maya. Natural History Museum, Mérida. 263 pp.Google Scholar
COLEY, P. D. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical environment. Ecological Monographs 53:209233.Google Scholar
CONANP-SEMARNAT. 2006. Programa de conservación y manejo de la Reserva de la Biosfera Los Petenes. Comisión Nacional de Áreas Naturales Protegidas, México DF. 206 pp.Google Scholar
CORNELISSEN, J. H. C., LAVOREL, S., GARNIER, E., DÍAZ, S., BUCHMANN, N., GURVICH, D. E., REICH, P. B., TER STEEGE, H., MORGAN, H. D., VAN DER HEIDEN, M. G. A., PAUSAS, J. G. & POORTER, H. 2003. A handbook of protocols for standardized and easy measurements of plant functional traits worldwide. Australian Journal of Botany 51:335380.Google Scholar
DAVIS, T. J., BARRACLOUGH, T. G., CHASE, M. W., SOLTIS, P. S., SOLTIS, D. E. & SAVOLAINEN, V. 2004. Darwin's abominable mystery: insights from a supertree of the angiosperms. Proceedings of the National Academy of Sciences USA 101:19041909.Google Scholar
DIXON, P. 2003. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science 14:927930.Google Scholar
DURÁN, R. 1987a. Descripción y análisis de la estructura y composición de la vegetación de los petenes del noroeste de Campeche, México. Biótica 12:191198.Google Scholar
DURÁN, R. 1987b. Lista florística de la región de los petenes Campeche, México. Biótica 12:199208.Google Scholar
FAHRIG, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics 34:487515.CrossRefGoogle Scholar
FAITH, D. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61:110.CrossRefGoogle Scholar
FAITH, D., MAGALLÓN, S., HENDRY, A. P., CONTI, E., YAHARA, T. & DONOGHUE, M. J. 2010. Ecosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Current Opinion in Environmental Sustainability 2:6674.Google Scholar
FEENY, P. P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565581.Google Scholar
GIRÃO, L. C., LOPES, A. V., TABARELLI, M. & BRUNA, E. M. 2007. Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic forest landscape. PloS One 2: e908.Google Scholar
GOTELLI, N. J. & COLWELL, R. K. 2011. Estimating species richness. Pp. 3954 in Magurran, A. E. & McGill, B. J. (eds.). Biological diversity: frontiers in measurement and assessment. Oxford University Press, New York.Google Scholar
HELM, A., HANSKI, I. & PÄRTEL, M. 2006. Slow response of plant species richness to habitat loss and fragmentation. Ecology Letters 9:7277.Google Scholar
HOOPER, D. U. & VITOUSEK, P. M. 1997. The effects of plant composition and diversity on ecosystem processes. Science 277:13021305.Google Scholar
HORTAL, J., BORGES, P. A. & GASPAR, C. 2006. Evaluating the performance of species richness estimators: sensitivity to sample grain size. Journal of Animal Ecology 75:274287.Google Scholar
JOST, L. 2006. Entropy and diversity. Oikos 113:363375.Google Scholar
KEMBEL, S. W., COWAN, P. D., HELMUS, M. R., CORNWELL, W. K., MORLON, H., ACKERLY, D. D., BLOMBER, S. P. & WEBB, C. O. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:14631464.Google Scholar
LAURANCE, W. F. 1990. Comparative responses of five arboreal marsupials to tropical forest fragmentation. Journal of Mammalogy 71:641653.Google Scholar
LAURANCE, W. F. 1991. Edge effects in tropical forest fragments: application of a model for the design of natural reserves. Biological Conservation 57:205219.Google Scholar
LAURANCE, W. F. & BIERREGAARD, R. O. 1997. Tropical forest remnants: ecology, management and conservation of fragmented communities. University of Chicago Press, Chicago. 616 pp.Google Scholar
LAURANCE, W. F. & PERES, C.A. 2006. Emerging threats to tropical forest. University of Chicago Press, Chicago. 541 pp.Google Scholar
LAURANCE, W. F., DELAMONICA, P., LAURANCE, S. G., VASCONCELOS, H. L. & LOVEJOY, T. E. 2000. Conservation: rain forest fragmentation kills big trees. Nature 404:836.Google Scholar
LAURANCE, W. F., NASCIMIENTO, H. E., ANDRADE, A. C., FEARNSIDE, P. M., RIBEIRO, J. E. & CAPRETZ, R. L. 2006. Rain forest fragmentation and the proliferation of successional trees. Ecology 87:469482.Google Scholar
LAVOREL, S., GRIGULIS, K., MCINTYRE, S., WILLIAMS, N. S. G., GARDEN, D., DORROUGH, J., BERMAN, S., QUÉTIER, F., THEBAULT, A. & BONIS, A. 2008. Assessing functional diversity in the field – methodology matters! Functional Ecology` 18;22:134147.Google Scholar
LOVEJOY, T. E., BIERREGAARD, R. O., RYLANDS, A. B., MALCOLM, J. R., QUINTELA, C. E., HARPER, L. H., BROWN, K. S., POWELL, A. H., POWELL, G. V. N., SCHUBART, H. O. R. & HAYS, M. 1986. Edge and other effects of isolation on Amazon forest fragments. Pp. 257285 in Soule, M. E. (ed.). Conservation biology: the science of scarcity and diversity, Sinauer Associates Inc., Sunderland.Google Scholar
MAYFIELD, M. M., BONI, M. E., DAILY, G. C. & ACKERLY, D. 2005. Species and functional diversity of native and human-dominated plant communities. Ecology 86:23652372.Google Scholar
MONTIEL, S., ESTRADA, A. & LEÓN, P. 2006. Bat assemblages in a naturally fragmented ecosystem in the Yucatan Peninsula, Mexico: species richness, diversity and spatio-temporal dynamics. Journal of Tropical Ecology 22:267276.Google Scholar
MOUCHET, M. A., VILLEGÉR, S., MASON, N. W. H. & MOUILLOT, D. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24:867876.Google Scholar
MURCIA, C. 1995. Edge effects in fragmented forest: implications for conservation. Trends in Ecology and Evolution 10:5862.Google Scholar
NIINEMETS, Ü. 2001. Global-scale climatic control of leaf dry mass per area, density and thickness in trees and shrub. Ecology 82:453466.Google Scholar
PENNINGTON, T. D. & SARUKHÁN, J. 2005. Arboles tropicales de México: Manual para la identificación de las principales especies. UNAM Fondo de Cultura Económica, México DF. 523 pp.Google Scholar
RICO-GRAY, V. 1982. Estudio de la vegetación de la zona costera inundable del noreste del estado de Campeche, México: Los Petenes. Biótica 7:171188.Google Scholar
SANTOS, B. A., PERES, C. A., OLIVEIRA, A., GRILLO, A., ALVES-ACOSTA, C. P. & TABARELLI, M. 2007. Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biological Conservation 141:249260.Google Scholar
SANTOS, B. A., ARROYO-RODRÍGUEZ, V., MORENO, C. E. & TABARELLI, M. 2010. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest. PloS One 5: e12625.Google Scholar
SWENSON, N. 2011. The role of evolutionary processes in producing biodiversity patterns, and the interrelationship between taxonomic, functional and phylogenetic diversity. American Journal of Botany 98:472480.Google Scholar
TABARELLI, M., PERES, C. A. & MELO, P. F. L. 2012. The “few winners and many losers” paradigm revisited: emerging prospects for tropical forest biodiversity. Biological Conservation 155:136140.Google Scholar
TERBORGH, J., LOPEZ, L., TELLO, J., YU, D. & BRUNI, A. R. 1997. Transitory states in relaxing ecosystems of land bridge islands. Pp. 256274 in Laurance, W. F. & Bierregaard, R. O. (eds.). Tropical forest remnants: ecology, management, and conservation of fragmented communities. University of Chicago Press, Chicago.Google Scholar
TILMAN, D. & DOWNING, J. A. 1994. Biodiversity and stability in grasslands. Nature 367:363365.Google Scholar
TILMAN, D., MAY, R. M., LEHMAN, C. L. & NOWAK, M. A. 1994. Habitat destruction and the extinction debt. Nature 371:6566.Google Scholar
TILMAN, D., KNOPS, J., WEDIN, D., REICH, P., RITCHIE, M. & SIEMANN, E. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277:13001302.Google Scholar
VAMOSI, J. C. & WILSON, J. R. U. 2008. Nonrandom extinction leads to elevated loss of angiosperm evolutionary history. Ecology Letters 11:10471053.Google Scholar
VAMOSI, S. M., HEARD, S. B., VAMOSI, J. C. & WEBB, C. O. 2009. Emergent patterns in the comparative analysis of phylogenetic community structure. Molecular Ecology 18:572592.Google Scholar
VILLÉGER, S., MASON, N. W. H. & MOUILLOT, D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:22902301.Google Scholar
WATSON, D. M. & PETERSON, A. T. 1999. Determinants of biodiversity in a naturally fragmented landscape: humid montane forest avifaunas of Mesoamerica. Ecography 22:582589.Google Scholar
WEBB, C. O., ACKERLY, D. D., MCPEEK, M. A. & DONOGHUE, M. J. 2002. Phylogenies and community ecology. Annual Review of Ecology, Evolution, and Systematics 33:475505.Google Scholar
WEBB, C. O., ACKERLY, D. D. & KEMBEL, S. W. 2008. Phylocom: software for the analysis of phylogenetic community structure and character evolution. Bioinformatics 24:20982100.Google Scholar
ZAMORA, C. 1999. Vegetación y flora de la unidad de evaluación y monitoreo de la biodiversidad de Hampolol, Campeche, México. La Ciencia y el Hombre 33:2752.Google Scholar