Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-jtg5s Total loading time: 0.422 Render date: 2021-09-19T04:07:48.179Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

What drives the vital rates of secondary hemiepiphytes? A first assessment for three species of Heteropsis (Araceae) in the Colombian Amazon

Published online by Cambridge University Press:  17 April 2015

María Paula Balcázar-Vargas*
Affiliation:
Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
Tinde R. van Andel
Affiliation:
Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands
Paul Westers
Affiliation:
Department of Biostatistics and Research Support, UMC Utrecht, div. Julius Centrum, PO Box 85500, 3508 GA Utrecht, the Netherlands
Pieter A. Zuidema
Affiliation:
Forest Ecology and Forest Management, Wageningen Universiteit, Droevendaalsesteeg 3a, PO Box 47, 6700 AA Wageningen, the Netherlands
*Corresponding
1Corresponding author. Email: mpbalcazar@yahoo.com

Abstract:

Secondary hemiepiphytes rely on other plants (hosts) to grow vertically. After germinating on the forest floor, their seedlings search a host to ascend. We recorded information on survival, growth, reproduction and vegetative propagation of three Heteropsis species, to evaluate what drives their vital rates. We measured 700 individuals of each study species between 2007 and 2009 in the southern Colombian Amazon. A gradual increase in stem length, leaf size, number of roots and plagiotropic branches was found with increasing height of Heteropsis individuals on their hosts. Survival of leafless non-climbing seedlings was very low (28% annually); increasing substantially (84–94%) once the seedling had ascended a host. The three Heteropsis species presented slow height growth rates (c. 2–8 cm y−1) with large variation, while a substantial percentage of the stems (31–62%) did not grow or dried out. Vegetative propagation in Heteropsis may act as a dispersion-propagation strategy to find a suitable host and reach the canopy again after falling. The slow growth rates suggest that Heteropsis individuals that have reached the canopy are rather old. Once plants have reached the tree crowns, their longevity is largely determined by the survival of the host tree.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AIDE, T. M. & ZIMMERMAN, J. K. 1990. Patterns of insect herbivory, growth, and survivorship in juveniles of a neotropical liana. Ecology 71:14121421.CrossRefGoogle Scholar
ANDRADE, I. M. & MAYO, S. J. 1998. Dynamic shoot morphology in Monstera adansonii Schott var. klotzschiana (Schott) Madison (Araceae). Kew Bulletin 53:399417.CrossRefGoogle Scholar
ANDRADE, I. M. & MAYO, S. J. 2000. Dynamic shoot morphology in root-climbing Araceae: Philodendron rudgeanum Schott and Ph. fragrantissimum (Hook.) G.Don. Feddes Repertorium 111:295314.CrossRefGoogle Scholar
APPANAH, S. & PUTZ, F. E. 1984. Climber abundance in virgin dipterocarp forest and the effect of pre-felling climber cutting on logging damage. Malaysian Forester 47:335342.Google Scholar
BALCÁZAR-VARGAS, M. P. & VAN ANDEL, T. R. 2005. The use of hemiepiphytes as craft fibers by indigenous communities in the Colombian Amazon. Ethnobotany Research and Applications 3:243260.CrossRefGoogle Scholar
BALCÁZAR-VARGAS, M. P., PEÑUELA-MORA, M. C., VAN ANDEL, T. R. & ZUIDEMA, P. A. 2012. The quest for a suitable host: size distributions of host trees and secondary hemiepiphytes search strategy. Biotropica 44:1926.CrossRefGoogle Scholar
BINH, B. M. 2009. Rattans of Vietnam: ecology, demography and harvesting. PhD thesis. Utrecht University, Utrecht, the Netherlands.Google Scholar
BØGH, A. 1996. Abundance and growth of rattans in Khao Chong National Park, Thailand. Forest Ecology and Management 84:7180.CrossRefGoogle Scholar
BURGESS, S. S. O., PITTERMANN, J. & DAWSON, T. E. 2006, Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crowns. Plant, Cell and Environment 29: 229239.CrossRefGoogle ScholarPubMed
CLARK, D. A. & CLARK, D. B. 1989. The role of physical damage in the seedling mortality regime of a neotropical rain forest. Oikos 55:225230.CrossRefGoogle Scholar
CLARK, D. B. & CLARK, D. A. 1991. The impact of physical damage on canopy tree regeneration in tropical rain forest. Journal of Ecology 79:447457.CrossRefGoogle Scholar
CLARK, D. A. & CLARK, D. B. 1992. Life history diversity of canopy and emergent trees in a Neotropical rain forest. Ecological Monographs 62:315344.CrossRefGoogle Scholar
CROAT, T. B. 1988. Ecology and life forms of Araceae. Aroideana 11:455.Google Scholar
DAWKINS, H. C. & FIELD, D. R. B. 1978. A long-term surveillance system for British woodland vegetation. Occasional Papers No. 1. Oxford University, Department of Forestry, Oxford. 116 pp.Google Scholar
ELZINGA, C. L., DANIEL, W., SALZER, J., WILLOUGHBY, W. & GIBBS, J. P. 2001. Monitoring plant and animal populations: a handbook for field biologists. Blackwell Science, Oxford. 360 pp.Google Scholar
GERWING, J. J. 2004. Life history diversity among six species of canopy lianas in an old-growth forest of the eastern Brazilian Amazon. Forest Ecology and Management 190:5772.CrossRefGoogle Scholar
GROSS, K. L. 1981. Predictions of fate from rosette size in four “biennial” plant species: Verbascum thapsus, Oenothera biennis, Daucus carota, and Tragopogon dubius. Oecologia 48:209213.CrossRefGoogle ScholarPubMed
HIETZ, P., AUSSERER, J. & SCHINDLER, G. 2002. Growth, maturation and survival of epiphytic bromeliads in a Mexican humid montane forest. Journal of Tropical Ecology 18:177191.CrossRefGoogle Scholar
HOFFMAN, B. 1997. The biology and use of nibbi Heteropsis flexuosa (Araceae): the source of an aerial root fibre product in Guyana. M.Sc. dissertation, Florida International University, Miami.Google Scholar
JIMÉNEZ, E. M. 2007. Producción de raíces finas en dos bosques de tierra firme sobre suelos diferentes en la Amazonía Colombiana. M.Sc. dissertation, Universidad Nacional, Colombia.Google Scholar
KLINKHAMER, P. G. L., DE JONG, T. J. & MEELIS, E. 1987. Delay of flowering in the ‘biennial’ Cirsium vulgare: size effects and devernalization. Oikos 49:303308.CrossRefGoogle Scholar
KNAB-VISPO, C., HOFFMAN, B., MOERMOND, T. & VISPO, C. 2003. Ecological observations on Heteropsis spp. (Araceae) in Southern Venezuela. Economic Botany 57:345353.CrossRefGoogle Scholar
LEE, D. W. & RICHARDS, J. H. 1991. Heteroblastic development in vines. Pp. 205243 in Putz, F. E. & Mooney, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
LOPEZ-PORTILLO, J., EWERS, F. W., ANGELES, G. & FISHER, J. B. 2000. Hydraulic architecture of Monstera acuminata: evolutionary consequences of the hemiepiphytic growth form. New Phytologist 145:289299.CrossRefGoogle Scholar
MARTÍNEZ-VILALTA, J. & PIÑOL, J. 2003. Limitaciones hidráulicas al aporte de agua a las hojas y resistencia a la sequía. Ecosistemas 12:17.Google Scholar
MATELSON, T. J., NADKARNI, N. M. & LONGINO, J. T. 1993. Longevity of fallen epiphytes in a neotropical montane forest. Ecology 74:265269.CrossRefGoogle Scholar
MÉNDEZ, M. & OBESO, J. R. 1993. Size-dependent reproductive and vegetative allocation in Arum italicum (Araceae). Canadian Journal of Botany 71:309314.CrossRefGoogle Scholar
MOFFETT, M. W. 2000. What's ‘‘up’’? A critical look at the basic terms of canopy biology. Biotropica 32:569596.CrossRefGoogle Scholar
NABE-NIELSEN, J. 2001. Diversity and distribution of lianas in a Neotropical rain forest, Yasuní National Park, Ecuador. Journal of Tropical Ecology 17:119.CrossRefGoogle Scholar
NABE-NIELSEN, J. 2002. Growth and mortality rates of the liana Machaerium cuspidatum in relation to light and topographic position. Biotropica 34:319322.CrossRefGoogle Scholar
NABE-NIELSEN, J. 2004. Demography of Machaerium cuspidatum, a shade-tolerant Neotropical liana. Journal of Tropical Ecology 20:505516.CrossRefGoogle Scholar
NABE-NIELSEN, J. & HALL, P. 2002. Environmentally induced clonal reproduction and life history traits of the liana Machaerium cuspidatum in an Amazonian rain forest, Ecuador. Plant Ecology 162:215226.CrossRefGoogle Scholar
OHLSON, M. 1988. Size-dependent reproductive effort in three populations of Saxifraga hirculus in Sweden. Journal of Ecology 76:10071016.CrossRefGoogle Scholar
OYAMA, K. 1990. Variation in growth and reproduction in a dioecious palm Chamaedorea tepejilote. Journal of Ecology 78:648663.CrossRefGoogle Scholar
PEÑALOSA, J. 1984. Basal branching and vegetative spread in two tropical rain forest lianas. Biotropica 16:19.CrossRefGoogle Scholar
PLOWDEN, C., UHL, C. & OLIVEIRA, F. A. 2003. The ecology and harvest potential of titica vine roots (Heteropsis flexuosa: Araceae) in the eastern Brazilian Amazon. Forest Ecology and Management 182:5973.CrossRefGoogle Scholar
POORTER, L., BONGERS, F., STERCK, F. J. & WÖLL, H. 2005. Beyond the regeneration phase: differentiation of height–light trajectories among tropical tree species. Journal of Ecology 93:256267.CrossRefGoogle Scholar
PRIMACK, R. B. & HALL, P. 1990. Costs of reproduction in the pink lady's slipper orchid: a four-year experimental study. American Naturalist 136:638656.CrossRefGoogle Scholar
PUTZ, F. E. 1984. The natural history of lianas on Barro Colorado Island, Panama. Ecology. 65:17131724.CrossRefGoogle Scholar
PUTZ, F. E. 1990. Growth habits and trellis requirements of climbing palms (Calamus spp.) in north-eastern Queensland. Australian Journal of Botany 38:603608.CrossRefGoogle Scholar
PUTZ, F. E. & HOLBROOK, N. M. 1986. Notes on the natural history of hemiepiphytes. Selbyana 9:6169.Google Scholar
PUTZ, F. E. & HOLBROOK, N. M. 1991. Biomechanical studies of vines. Pp. 5378 in Putz, F. E. & Mooney, H. A. (eds.). The biology of vines. Cambridge University Press, Cambridge.Google Scholar
RAY, T. S. 1976. Skototropism and the natural history of some tropical vines. Honours thesis in Biology, Florida State University.Google Scholar
RAY, T. S. 1987. Cyclic heterophylly in Syngonium (Araceae). American Journal of Botany 74:1626.CrossRefGoogle Scholar
RAY, T. S. 1990. Metamorphosis in the Araceae. American Journal of Botany 77:15991609.CrossRefGoogle Scholar
RAY, T. S. 1992. Foraging behaviour in tropical herbaceous climbers (Araceae). Journal of Ecology 80:189203.CrossRefGoogle Scholar
SAKAI, A., NOMIYA, H. & SUZUKI, W. 2002. Horizontal distribution of stolons of a temperate liana Wisteria floribunda DC. and its ecological significance. Journal of Forest Research 7:125130.CrossRefGoogle Scholar
SCHIMPER, A. F. W. 1903. Plant geography upon a physiological basis. Clarendon Press, Oxford. 839 pp.Google Scholar
SCHNITZER, S. A. 2005. A mechanistic explanation for global patterns of liana abundance and distribution. American Naturalist 166:262276.CrossRefGoogle ScholarPubMed
SOARES, M. L., MAYO, S. J. & GRIBEL, R. 2013. A preliminary taxonomic revision of Heteropsis (Araceae). Systematic Botany 38:925974.CrossRefGoogle Scholar
STRONG, D. R. & RAY, T. S. 1975. Host tree location behavior of a tropical vine (Monstera gigantea) by skototropism. Science 190:804806.CrossRefGoogle Scholar
TURRIAGO-GARCÍA, J. D. 2013. Ecología funcional de raíces aéreas absorbentes del Yare (Heteropsis spp (Kunt)) en bosques de tierra firme de la Amazonia Colombiana. M.Sc. dissertation, Universidad Nacional, Colombia.Google Scholar
TYREE, M. T. & SPERRY, J. S. 1989. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology 40:1938.CrossRefGoogle Scholar
VAN DER MEER, P. J. & BONGERS, F. 1996. Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana. Journal of Ecology 84:1929.CrossRefGoogle Scholar
WILDER, G. J. 1992. Comparative morphology and anatomy of absorbing roots and anchoring roots in three species of Cyclanthaceae. Canadian Journal of Botany 70:3848.CrossRefGoogle Scholar
WILLIAMS-LINERA, G. & LAWTON, R. O. 1995. The ecology of hemiepiphytes in forest canopies. Pp. 255283 in Lowman, M. D. & Nadkarni, N. M. (eds.). Forest canopies. Elsevier Academic Press, Burlington.Google Scholar
ZOTZ, G. 2013. “Hemiepiphyte” – a confusing term and its history. Annals of Botany 111:10151020.CrossRefGoogle ScholarPubMed
ZOTZ, G., WILHELM, K. & BECKER, A. 2011. Heteroblasty – a review. Botanical Review 77:109151.CrossRefGoogle Scholar
ZUIDEMA, P. A. & BOOT, R. 2002. Demography of the Brazil nut tree (Bertholletia excelsa) in the Bolivian Amazon: impact of seed extraction on recruitment and population dynamics. Journal of Tropical Ecology 18:131.CrossRefGoogle Scholar
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

What drives the vital rates of secondary hemiepiphytes? A first assessment for three species of Heteropsis (Araceae) in the Colombian Amazon
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

What drives the vital rates of secondary hemiepiphytes? A first assessment for three species of Heteropsis (Araceae) in the Colombian Amazon
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

What drives the vital rates of secondary hemiepiphytes? A first assessment for three species of Heteropsis (Araceae) in the Colombian Amazon
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *