Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-swqlm Total loading time: 0.293 Render date: 2021-12-06T21:06:14.580Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Variation in the composition and diversity of ground-layer herbs and shrubs in unburnt and burnt landscapes

Published online by Cambridge University Press:  09 July 2018

Daniel F. R. Cleary*
Affiliation:
Departamento de Biologia, CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193 Aveiro, Portugal
Karl A. O. Eichhorn
Affiliation:
Eichhorn Ecologie, Zeist, the Netherlands
*
*Corresponding author. Email: cleary@ua.pt or dfrcleary@gmail.com

Abstract:

Forest fires pose an important threat to tropical rain-forest biodiversity. In the present study, we assessed ground layer (herb and shrub) communities in six differentially disturbed landscape plots in East Kalimantan, Indonesia, including primary and logged forest and once-, twice- and frequently-burnt forest. Overall, we recorded 175 species of herbs and shrubs; richness was highest in twice-burnt forest and lowest in logged forest. Vegetation and topographical variables including the percentage of the plot burnt and tree abundance were significant predictors of variation in composition. The main compositional gradient showed a clear distinction between subplots in unburnt versus burnt forest. A subset of subplots in burnt forest, however, clustered together with subplots from unburnt forest. These plots were located in a network of relatively unscathed forest along floodplains that persisted in the burnt-forest matrix. Small plant species associated with unburnt forest included several species of Dryopteridaceae, Marantaceae and Rubiaceae. Species associated with once- and twice-burnt forest included Mikania scandens (Compositae), Microlepia speluncae (Dennstaedtiaceae), Nephrolepis cf. biserrata (Nephrolepidaceae), Lygodium microphyllum (Schizaeaceae) and Hornstedtia cf. reticulata (Zingiberaceae). The frequently-burnt landscape plot was characterized by a high cover of the grass species Imperata cylindrica and the invasive exotic shrub Chromolaena odorata. Importantly, these species and other exotics had also invaded the once- and twice-burnt forest and represent a potential threat to forest recovery.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AIDE, T. M. & CAVELIER, J. 1994. Barriers to lowland tropical forest restoration in the Sierra Nevada de Santa Marta, Colombia. Restoration Ecology 2:219229.CrossRefGoogle Scholar
BERBET, M. L. C. & COSTA, M. H. 2003. Climate change after tropical deforestation: seasonal variability of surface albedo and its effects on precipitation change. Journal of Climate 12:20992104.2.0.CO;2>CrossRefGoogle Scholar
BRYSON, C. T., KRUTZ, L. J., ERVIN, G. N., REDDY, K. N. & BYRD, J. D. 2010. Ecotype variability and edaphic characteristics for cogongrass (Imperata cylindrica) populations in Mississippi. Invasive Plant Science and Management 3:199207.CrossRefGoogle Scholar
CHAPIN, F. S., ZAVALETA, E. S., EVINER, V. T., NAYLOR, R. L., VITOUSEK, P., REYNOLDS, H. L., HOOPER, D. U., LAVOREL, S., SALA, O. E., HOBBIE, S. E., MACK, M. C. & DÍAZ, S. 2000. Consequences of changing biodiversity. Nature 405:234244.CrossRefGoogle ScholarPubMed
CLARKE, K. R., SOMERFIELD, P. J. & CHAPMAN, M. G. 2006. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology 330:5580.CrossRefGoogle Scholar
CLEARY, D. F. R. 2003. An examination of scale of assessment, logging and ENSO-induced fires on butterfly diversity in Borneo. Oecologia 135:313321.CrossRefGoogle ScholarPubMed
CLEARY, D. F. R. 2016. Diversity and composition of plants, butterflies and odonates in an Imperata grassland landscape. Journal of Tropical Ecology 32:555560.CrossRefGoogle Scholar
CLEARY, D. F. R. 2017. Impact of logging on tree, liana and herb assemblages in a Bornean forest. Journal of Sustainable Forestry 36:806817.CrossRefGoogle Scholar
CLEARY, D. F. R. & GENNER, M. J. 2006. Understanding diversity patterns of Bornean butterfly assemblages. Biodiversity and Conservation 15:517538.CrossRefGoogle Scholar
CLEARY, D. F. R. & GRILL, A. 2004. Butterfly response to severe ENSO-induced forest fires in Borneo. Ecological Entomology 29:666676.CrossRefGoogle Scholar
CLEARY, D. F. R. & PRIADJATI, A. 2005. Vegetation responses to burning in a rain forest in Borneo. Plant Ecology 177:145163.CrossRefGoogle Scholar
CLEARY, D. F. R., MOOERS, A. Ø., EICHHORN, K. A. O., VAN TOL, J., DE JONG, R. & MENKEN, S. B. J. 2004. Diversity and community composition of butterflies and odonates in an ENSO-induced fire affected habitat mosaic: a case study from East Kalimantan, Indonesia. Oikos 105:426446.CrossRefGoogle Scholar
CLEARY, D. F. R., FAUVELOT, C., GENNER, M. J., MENKEN, S. B. J. & MOOERS, A. Ø. 2006a. Parallel responses of species and genetic diversity to El Niño Southern Oscillation-induced environmental destruction. Ecology Letters 9:301307.CrossRefGoogle ScholarPubMed
CLEARY, D. F. R., PRIADJATI, A., SURYOKUSUMO, B. K. & MENKEN, S. B. J. 2006b. Butterfly, sapling, seedling and tree diversity in a fire-affected Bornean rainforest. Austral Ecology 31:4657.CrossRefGoogle Scholar
COCHRANE, M. A. 2003. Fire science for rainforests. Nature 421:913919.CrossRefGoogle ScholarPubMed
COCHRANE, M. A. & SCHULZE, M. D. 1998. Forest fires in the Brazilian Amazon. Conservation Biology 12:948950.CrossRefGoogle Scholar
COCHRANE, M. A. & SCHULZE, M. D. 1999. Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31:216.Google Scholar
COCHRANE, M. A., ALENCAR, A., SCHULZE, M. D., SOUZAJR, C. M. JR, C. M., NEPSTAD, D. C., LEFEBRE, P. & DAVIDSON, E. A. 1999. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284:18321835.CrossRefGoogle ScholarPubMed
COSTA, F. & MAGNUSSON, W. 2002. Selective logging effects on abundance, diversity, and composition of tropical understory herbs. Ecological Applications 12:807819.CrossRefGoogle Scholar
CURRAN, L. M., TRIGG, S. N., MCDONALD, A. K., ASTIANI, D., HARDIONO, Y. M., SIREGAR, P., CANIAGO, I. & KASISCHKE, E. 2004. Lowland forest loss in protected areas of Indonesian Borneo. Science 303:10001003.CrossRefGoogle ScholarPubMed
DENNIS, R. A., HOFFMANN, A., APPLEGATE, G., VON GEMMINGEN, G. & KARTAWINATA, K. 2001. Large scale fire: creator and destroyer of secondary forests in western Indonesia. Journal of Tropical Forest Science 13:786799.Google Scholar
DE VOOGD, N. J., CLEARY, D. F. R., HOEKSEMA, B. W., NOOR, A. & VAN SOEST, R. W. M. 2006. Sponge beta diversity in the Spermonde Archipelago, Indonesia. Marine Ecology Progress Series 309:131142.CrossRefGoogle Scholar
DIAZ, R., OVERHOLT, W. A. & LANGELAND, K. 2008. Jamaican nightshade (Solanum jamaicense): a threat to Florida's hammocks. Invasive Plant Science and Management 1:422425.CrossRefGoogle Scholar
DURIEUX, L., MACHADO, L. A. T. & LAURENT, H. 2003. The impact of deforestation on cloud cover over the Amazon arc of deforestation. Remote Sensing and Environment 86:132140.CrossRefGoogle Scholar
EICHHORN, K. A. O. 2006. Plant diversity after rain-forest fires in Borneo. Blumea Supplement 18.Google Scholar
ESTRADA, J. A. & FLORY, S. L. 2015. Cogongrass (Imperata cylindrica) invasions in the US: mechanisms, impacts, and threats to biodiversity. Global Ecology and Conservation 3:110.CrossRefGoogle Scholar
GALLEGOS, S. C., HENSEN, I., SAAVEDRA, F. & SCHLEUNING, M. 2015. Bracken fern facilitates tree seedling recruitment in tropical fire-degraded habitats. Forest Ecology and Management 337:135143.CrossRefGoogle Scholar
GARWOOD, N. C. 1989. Tropical soil seed banks: a review. Pp. 149209 in Leck, M. A., Parker, V. T. & Simpson, R. L. (eds). Ecology of soil seed banks. Academic Press, San Diego.CrossRefGoogle Scholar
GOLDAMMER, J. G. 1999. Forest on fire. Science 284:17821783.CrossRefGoogle Scholar
GOLDAMMER, J. G., SEIBERT, B. & SCHINDELE, W. 1996. Fire in dipterocarp forests. Pp. 155–185 in Schulte, A. & Schöne, D. (eds). Dipterocarp forest ecosystems: towards sustainable management. World Scientific, Singapore.Google Scholar
GUARIGUATA, M. R. & OSTERTAG, R. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148:185206.CrossRefGoogle Scholar
HABERLE, S. G. & LEDRU, M. P. 2001. Correlations among charcoal records of fires from the past 16,000 years in Indonesia, Papua New Guinea and Central and South America. Quaternary Research 55:97104.CrossRefGoogle Scholar
HOLL, K. D. 2002. Effect of shrubs on tree seedling establishment in an abandoned tropical pasture. Journal of Ecology 90:179187.CrossRefGoogle Scholar
HOLL, K. D., LOIK, M. E., LIN, E. H. V. & SAMUELS, I. A. 2000. Tropical montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restoration Ecology 8:339349.CrossRefGoogle Scholar
HOLMGREN, M., SCHEFFER, M., EZCURRA, E., GUTIERREZ, J. R. & MOHREN, G. M. J. 2001. El Niño effects on the dynamics of terrestrial ecosystems. Trends in Ecology and Evolution 16:8994.CrossRefGoogle ScholarPubMed
KARTAWINATA, K., JESSUP, T. C. & VAYDA, A. P. 1989. Exploitation in Southeast Asia. Pp. 591610 in Lieth, H. & Werger, M. J. A. (eds). Tropical rain-forest ecosystems: biogeographical and ecological studies. Ecosystems of the World, vol. 14B. Elsevier, Amsterdam.CrossRefGoogle Scholar
LAURANCE, W. F. 1998. A crisis in the making: responses of Amazonian forests to land use and climate change. Trends in Ecology and Evolution 13:411415.CrossRefGoogle ScholarPubMed
LAURANCE, W. F., COCHRANE, M. A., BERGEN, S., FEARNSIDE, P. M., DELAMONICA, P., BARBER, C., D'ANGELO, S. & FERNANDES, T. 2001. The future of the Brazilian Amazon. Science 291:438442.CrossRefGoogle ScholarPubMed
LEGENDRE, P. & GALLAGHER, E. D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271280.CrossRefGoogle ScholarPubMed
MACDONALD, G. E. 2004. Cogongrass (Imperata cylindrica) – biology, ecology, and management. Critical Reviews in Plant Sciences 23:367380.CrossRefGoogle Scholar
MARSCHALL, M. & PROCTOR, M. C. F. 2004. Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Annals of Botany 94:593603.CrossRefGoogle ScholarPubMed
MEAVE, J., KELLMAN, M., MACDOUGALL, A. & ROSALES, J. 1991. Riparian habitats as tropical forest refugia. Global Ecology and Biogeography Letters 1:6976.CrossRefGoogle Scholar
NEPSTAD, D. C., VERISSIMO, A., ALENCAR, A., NOBRE, C., LIMA, E., LEFEBRE, P., SCHLESINGER, P., POTTER, C., MOUTINHO, P., MENDOZA, E., COCHRANE, M. & BROOKS, V. 1999. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505508.CrossRefGoogle Scholar
NEPSTAD, D. C., CARVALHO, G., BARROS, A. C., ALENCAR, A., CAPOBIANCO, J. P., BISHOP, J., MOUTINHO, P., LEFEBRE, P., LOPES SILVA, U. & PRINS, E. 2001. Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management 154:395407.CrossRefGoogle Scholar
OTSAMO, A., ÅDJERS, G., SASMITO HADI, T., KUUSIPALO, J., TUOMELA, K. & VUOKKO, R. 1995. Effect of site preparation and initial fertilisation on the establishment and growth of four plantation tree species used in reforestation of Imperata cylindrica (L.) Beauv. dominated grasslands. Forest Ecology and Management 73:271277.CrossRefGoogle Scholar
PERES, C. A. 1999. Ground fires as agents of mortality in a Central Amazonian forest. Journal of Tropical Ecology 15:535541.CrossRefGoogle Scholar
PERES, C. A. 2001. Paving the way to the future of Amazonia. Trends in Ecology and Evolution 16:217219.CrossRefGoogle ScholarPubMed
RAMÍREZ-TREJO, M. D. R., PÉREZ-GARCÍA, B., PÉREZ-SALICRUP, D. R. & OROZCO-SEGOVIA, A. 2010. Effect of fire on the germination of spores of Pteridium caudatum, an invasive fern. Journal of Tropical Ecology 26:457465.CrossRefGoogle Scholar
SCHULTEN, J. R., COLE, T. C., CORDELL, S., PUBLICO, K. M., OSTERTAG, R., ENOKA, J. E. & MICHAUD, J. D. 2014. Persistence of native trees in an invaded Hawaiian lowland wet forest: experimental evaluation of light and water constraints. Pacific Science 68:267285.CrossRefGoogle Scholar
SHUKLA, J., NOBRE, C. & SELLERS, P. 1990. Amazon deforestation and climate change. Science 247:13221325.CrossRefGoogle ScholarPubMed
SIEGERT, F., RUECKER, G., HINRICHS, A. & HOFFMANN, A. A. 2001. Increased damage from fires in logged forests during droughts caused by El Niño. Nature 414:437440.CrossRefGoogle ScholarPubMed
SLIK, J. W. F. & EICHHORN, K. A. O. 2003. Fire survival of lowland tropical rain-forest trees in relation to stem diameter and topographic position. Oecologia 137:446455.CrossRefGoogle ScholarPubMed
SWAINE, M. D. & WHITMORE, T. C. 1988. On the definition of ecological species groups in tropical rain forests. Vegetatio 75: 8186.CrossRefGoogle Scholar
TUDHOPE, A. W., CHILCOTT, C. P., MCCULLOCH, M. T., COOK, E. R., CHAPOPELL, J., ELLAM, R. M., LEA, D. W., LOUGH, J. M. & SHIMMIELD, G. B. 2001. Variability in the El Niño Southern Oscillation through a glacial-interglacial cycle. Science 291:15111517.CrossRefGoogle ScholarPubMed
VAN BREMEN, H., IRIANSYAH, M. & ANDRIESSE, W. 1990. Detailed soil survey and physical land evaluation in a tropical rain forest, Indonesia. Technical Series 6. Stichting Tropenbos, Wageningen. 188 pp.Google Scholar
VAN NIEUWSTADT, M. G. L., SHEIL, D. & KARTAWINATA, K. 2001. The ecological consequences of logging in the burnt forests of East Kalimantan, Indonesia. Conservation Biology 15:11831186.CrossRefGoogle Scholar
VIEIRA, L. T. A., POLISEL, R. T., IVANAUSKAS, N. M., SHEPHERD, G. J., WAECHTER, J. L., YAMAMOTO, K. & MARTINS, F. R. 2015. Geographical patterns of terrestrial herbs: a new component in planning the conservation of the Brazilian Atlantic Forest. Biodiversity and Conservation 24:21812198.CrossRefGoogle Scholar
YU, F., AKIN-FAJIYE, M., MAGAR, K. T., REN, J. & GUREVITCH, J. 2016. A global systematic review of ecological field studies on two major invasive plant species, Ageratina adenophora and Chromolaena odorata. Diversity and Distributions 22:11741185.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Variation in the composition and diversity of ground-layer herbs and shrubs in unburnt and burnt landscapes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Variation in the composition and diversity of ground-layer herbs and shrubs in unburnt and burnt landscapes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Variation in the composition and diversity of ground-layer herbs and shrubs in unburnt and burnt landscapes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *