Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T21:19:15.744Z Has data issue: false hasContentIssue false

Survival, development and predatory effects of mosquito larvae in Venezuelan phytotelmata

Published online by Cambridge University Press:  10 July 2009

L. P. Lounibos
Affiliation:
Florida Medical Entomology Laboratory, 200 9th St SE, Vero Beach, Florida 32962, USA
J. H. Frank
Affiliation:
Florida Medical Entomology Laboratory, 200 9th St SE, Vero Beach, Florida 32962, USA
C. E. Machado-Allison
Affiliation:
Instituto de Zoologia Tropical, Universidad Central de Venezuela, Apartado 47058, Caracas 1041, Venezuela
P. Ocanto
Affiliation:
Instituto de Zoologia Tropical, Universidad Central de Venezuela, Apartado 47058, Caracas 1041, Venezuela
J. C. Navarro
Affiliation:
Instituto de Zoologia Tropical, Universidad Central de Venezuela, Apartado 47058, Caracas 1041, Venezuela

Abstract

To assess the influence of microhabitat and season on predator growth and survival and prey community structure, first instars of native Toxorhynchites haemorrhoidalis, a predatory mosquito, were released into Heliconia bracts, bamboo internodes, and the axils of two species of Aechmea bromeliads during wet and dry seasons in a lowland rain forest in eastern Venezuela. Experimental and control microhabitats were compared by complete censusing of macroscopic invertebrates 10 and 20 days after releases.

Survival of T. haemorrhoidalis differed significantly among habitats and was reduced by desiccation in dry-season bamboos and in Aechmea nudicaulis and by the presence of a predatory damselfly (Odonata: Zygoptera) in bromeliads. Developmental rate differed among habitats in the wet but not in the dry season; rapid wet-season maturation was associated with increased prey abundance in Heliconia.

Larvae of T. haemorrhoidalis consumed particular taxa and size categories of dipterous prey. Predation significantly reduced the abundance and skewed size-class distributions of Culicidae, Ceratopogonidae, Psychodidae, and pooled samples of Thaumaleidae plus Chironomidae. In bamboos, instar distributions of other mosquitoes were skewed in the presence of T. haemorrhoidalis even though a significant reduction in mosquito abundance was not detected. A decrease in species richness of aquatic Diptera was associated with intense predation by Toxorhynchites in Heliconia and A. nudicaulis.

Toxorhynchites theobaldi was recognized as the naturally occurring predator in local bamboos, and released larvae caused significant reductions in abundance or size-class frequency shifts among three families of Diptera. Niche segregation between these sympatric Toxorhynchites is maintained by oviposition preferences: the larger species, T. theobaldi, oviposits in bamboos and the smaller T. haemorrhoidalis occurs in plant bracts and axils.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Addicott, J. F. 1974. Predation and prey community structure: an experimental study of the effect of mosquito larvae on the protozoan communities of pitcher plants. Ecology 55:475492.CrossRefGoogle Scholar
Bradshaw, W. E. & Holzapfel, C. M. 1983a. Life cycle strategies in Wyeomyia smithii: seasonal and geographic adaptations. Pp. 167185 in Brown, V. K. & Hodek, I. (eds). Diapause and life cycle strategies in insects. W. Junk, The Hague.Google Scholar
Bradshaw, W. E. & Holzapfel, C. M. 1983b. Predator-mediated non-equilibirum coexistence of tree-hole mosquitoes in southeastern North America. Oecologia 57:239256.CrossRefGoogle Scholar
Corbet, P. S. 1983. Odonata in phytotelmata. Pp. 29–54 in Frank, J. H. & Lounibos, L. P. (eds). Phyto-telmata: terrestrial plants as hosts for aquatic insect communities. Plexus, Medford, New Jersey. 293 pp.Google Scholar
Ewel, J. J. & Madriz, A. 1968. Zonas de Vida de Venezuela. Directión de Investigación, Ministerio de Agricultura y Cría, Caracas. 265 pp.Google Scholar
Fish, D. 1983. Phytotelmata: flora and fauna. Pp. 1–27 in Frank, J. H. & Lounibos, L. P. (eds). Phyto-telmata: terrestrial plants as hosts for aquatic insect communities. Plexus, Medford New Jersey. 293 pp.Google Scholar
Focks, D. A. & Sackett, S. R. 1985. Some factors affecting interaction of Toxorhynchites amboi-nensis with Aedes and Culex in an urban environment. Pp. 55–64 in Lounibos, L. P., Rey, J. R. & Frank, J. H. (eds). Ecology oj mosquitoes: proceedings of a workshop. Florida Medical Entomology Laboratory, Vero Beach. 579 pp.Google Scholar
Frank, J. H. 1983. Bromeliad phytotelmata and their biota, especially mosquitoes. Pp. 101–128 in Frank, J. H. & Lounibos, L. P. (eds). Phytotelmata: terrestrial plants as hosts for aquatic insect communities. Plexus, Medford, New Jersey. 293 pp.Google Scholar
Frank, J. H., Curtis, G. A. & O'meara, G. F. 1984. On the bionomics of bromeliad-inhabiting mosquitoes. X. Toxorhynchites r. rutilus as a predator of Wyeomyia vanduzeei (Diptera: Culicidae). Journal of Medical Entomology 21:149158.CrossRefGoogle Scholar
GiguerÉ, L. A. 1979. The predatory response of Chaoborus larvae to acoustic stimuli, and the acoustic characteristics of their prey. Zeitschrift für Tierpsychologie 50:113123.CrossRefGoogle Scholar
Istock, C. A., Vavra, K. J. & Zimmer, H. 1976. Ecology and evolution of the pitcher-plant mosquito. 3. Resource tracking by a natural population. Evolution 30:548557.Google ScholarPubMed
Jeffries, M. J. & Lawton, J. H. 1984. Enemy free space and the structure of ecological communities. Biological Journal of the Linnaean Society 23:269286.CrossRefGoogle Scholar
Kazana, M., Machado-Allison, C. E. & Bulla, L. A. 1983. Preferencias alimentarias de Toxorhynchites theobaldi (Diptera: Culicidae). Acta Cientifica Venezolana 34:151158.Google Scholar
Lounibos, L. P. 1979. Temporal and spatial distribution, growth and predatory behaviour of Toxorhynchites brevipalpis (Diptera: Culicidae) at the Kenya coast. Journal of Animal Ecology 48:213236.CrossRefGoogle Scholar
Lounibos, L. P. 1981. Habitat segregation among African treehole mosquitoes. Ecological Entomology 6:129154.CrossRefGoogle Scholar
Lounibos, L. P. 1985. Interactions affecting production of treehole mosquitoes in south Florida. Pp. 65–77 in Lounibos, L. P., Rey, J. R. & Frank, J. H. (eds). Ecology of mosquitoes: proceedings of a workshop. Florida Medical Entomology Laboratory, Vero Beach. 579 pp.Google Scholar
Lounibos, L P., Frank, J. H., Machado-Allison, C. E., Navarro, J. C. & Ocanto, P. 1987. Seasonality, abundance, and invertebrate associates of Leptagrion siqueirai Santos in Aechmea bromeliads in Venezuelan rain forest. Odonatologica. In press.Google Scholar
Machado-Allison, C. E., Rodriguez, D. J., Barrera-r., R. & Gomez-Cova, C. 1983. The insect community associated with inflorescences of Heliconia aurea Lamarck in Venezuela. Pp. 247–270 in Frank, J. H. & Lounibos, L. P. (eds). Phytotelmata: terrestrial plants as hosts for aquatic insect communities. Plexus, Medford, New Jersey. 293 pp.Google Scholar
Machado-Allison, C. E., Barrera-r., R., Frank, J. H., Delgado, L. & Gomez-Cova, C. 1985. Mosquito communities in Venezuelan phytotelmata. Pp. 79–93 in Lounibos, L. P., Rey, J. R. & Frank, J. H. (eds). Ecology of mosquitoes: proceedings of a workshop. Florida Medical Entomology Laboratory, Vero Beach. 579 pp.Google Scholar
Maguire, B. 1971. Phytotelmata: biota and community structure determination in plant-held waters. Annual Review of Ecology and Systematics 2:439464.CrossRefGoogle Scholar
Mogi, M., Horio, M., Miyagi, I. & Cabrera, B. D. 1985. Succession, distribution, overcrowding and predation in the aquatic community in aroid axils, with special reference to mosquitoes. Pp. 95–119 in Lounibos, L. P., Rey, J. R. & Frank, J. H. (eds). Ecology of mosquitoes: proceedings of a workshop. Florida Medical Entomology Laboratory, Vero Beach. 579 pp.Google Scholar
Murdoch, W. W. 1979. Predation and dynamics of prey populations. Fortschritte der Zoologie 25:293310.Google Scholar
Neill, W. E. 1981. Impact of Chaoborus predation upon the structure and dynamics of a crustacean zooplankton community. Oecologia 48:164177.CrossRefGoogle ScholarPubMed
Padgett, P. D. & Focks, D. A. 1980. Laboratory observations on the predation of Toxorhynchites rutilus rutilus on Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology 17:466477.CrossRefGoogle ScholarPubMed
Russo, R. J. 1986. Comparison of predatory behavior in five species of Toxorhynchites. Annals of the Entomological Society of America 79:715722.CrossRefGoogle Scholar
Seifert, R. P. 1980. Mosquito fauna of Heliconia aurea. Journal of Animal Ecology 49:687697.CrossRefGoogle Scholar
Seifert, R. P. 1982. Neotropical Heliconia insect communities. Quarterly Review of Biology 57:128.CrossRefGoogle Scholar
Seifert, R. P. & Barrera-r., R. 1981. Cohort studies on mosquito (Diptera: Culicidae) larvae living in the water-filled floral bracts of Heliconia aurea (Zingiberales: Musaceae). Ecological Entomology 6:191197.CrossRefGoogle Scholar
Sih, A., Crowley, P., Mcpeek, M., Petranka, J. & Strohmeier, K. 1985. Predation, competition, and prey communities: a review of field experiments. Annual Review of Ecology and Systematics 16:269311.CrossRefGoogle Scholar
Sokal, R. R. & Rohlf, F.J. 1981. Biometry. 2nd edn. W. H. Freeman, San Francisco. 859 pp.Google Scholar
Steffan, W. A. & Evenhuis, N. L. 1981. Biology of Toxorhynchites. Annual Review of Entomology 26:159181.CrossRefGoogle Scholar
Swift, M. W. & Fedorenko, A. Y. 1975. Some aspects of prey capture by Chaoborus larvae. Lim-nology and Oceanography 20:418425.CrossRefGoogle Scholar
Zaret, T. M. 1980. Predation and freshwater communities. Yale University Press, New Haven. 187 pp.Google Scholar
Zavortink, T. J., Roberts, D. R. & Hoch, A. L. 1983. Trichoprosopon digitatum – morphology, biology, and potential medical importance. Mosquito Systematics 15:141149.Google Scholar