Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-8fhp6 Total loading time: 0.268 Render date: 2021-09-20T04:12:51.018Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Spatial patterns and habitat associations of Fagaceae in a hill dipterocarp forest in Ulu Gadut, West Sumatra

Published online by Cambridge University Press:  01 September 2008

Sen Nishimura*
Affiliation:
Center for Integrated Area Studies, Kyoto University Yoshida Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
Tsuyoshi Yoneda
Affiliation:
Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
Shinji Fujii
Affiliation:
University of Human Environments, Okazaki, Aichi 444-3505, Japan
Erizal Mukhtar
Affiliation:
Faculty of Science, Andalas University, Padang, West Sumatra, Indonesia
Mamoru Kanzaki
Affiliation:
Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
*Corresponding
1Corresponding author. Email: nishimu@cias.kyoto-u.ac.jp

Abstract:

Spatial distribution patterns and habitat associations of Fagaceae species in a Fagaceae-codominated hill forest in Sumatra were investigated. Ten Fagaceae species believed to be zoochorous (animal-dispersed seed) and five codominant canopy and emergent anemochorous (wind-dispersed seed) species from Anacardiaceae and Dipterocarpaceae were studied. Five Fagaceae species and all codominant anemochorous species were significantly aggregated while the other five Fagaceae species showed a random distribution pattern. The median distance of small saplings from the nearest reproductively mature tree tended to be shorter for aggregated species than spatially random species. This implied that some Fagaceae species dispersed over longer distances than anemochorous species. Relationships between four habitat variables and distribution of the target species were examined with torus-translation tests. Three Quercus and one Lithocarpus species showed positive habitat associations. Two Quercus species aggregated at the preferred habitat, but the others were randomly distributed. Thus tree species with specific habitat preference do not only aggregate at the preferred habitat. The three ridge-specialist Quercus species showed gradual changes in habitat association, which could reflect avoidance of competition among the species. Most of the Lithocarpus species showed little correlation with habitat variables. Coexistence of the three Quercus species partly reflected subtle differences in topographical preferences. Distribution of five of the six Lithocarpus species was unrelated to topography, so other mechanisms must be sought to account for the maintenance of coexistence in this species-rich genus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AIBA, S., KITAYAMA, K. & TAKYU, M. 2004. Habitat associations with topography and canopy structure of tree species in a tropical montane forest on Mount Kinabalu, Borneo. Plant Ecology 174:147161.CrossRefGoogle Scholar
ASHTON, P. S. 1969. Speciation among tropical forest trees: some deductions in the light of recent evidence. Biological Journal of the Linnean Society 1:155196.CrossRefGoogle Scholar
ASHTON, P. S. 1982. Dipterocarpaceae. Pp. 237552 in van Steenis, C. G. G. J. (ed.). Flora Malesiana, series I, vol. 9. Martinus Nijhoff Publishers, The Hague.Google Scholar
ASHTON, P. S. 1988. Dipterocarp biology as a window to the understanding of tropical forest structure. Annual Review of Ecology and Systematics 19:347370.CrossRefGoogle Scholar
BAILLIE, I. C., ASHTON, P. S., COURT, M. N., ANDERSON, J. A. R., FITZPATRICK, E. A. & TINSLEY, J. 1987. Site characteristics and the distribution of tree species in mixed dipterocarp forest on Tertiary sediments in Central Sarawak, Malaysia. Journal of Tropical Ecology 3:201220.CrossRefGoogle Scholar
BESAG, J. 1977. Contribution to the discussion on Dr Ripley's paper. Journal of the Royal Statistical Society B 39:193195.Google Scholar
BESAG, J. & DIGGLE, P. J. 1977. Simple Monte Carlo tests for spatial pattern. Applied Statistics 26:327333.CrossRefGoogle Scholar
CANNON, C. H. 2001. Morphological and molecular diversity in Lithocarpus (Fagaceae) of Mount Kinabalu. Sabah Parks Nature Journal 4:4569.Google Scholar
CLARK, D. B., CLARK, D. A. & READ, J. M. 1998. Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. Journal of Ecology 86:101112.CrossRefGoogle Scholar
COMITA, L. S., CONDIT, R. & HUBBELL, S. P. 2007. Developmental changes in habitat associations of tropical trees. Journal of Ecology 95:482492.CrossRefGoogle Scholar
CONDIT, R., ASHTON, P. S., BAKER, P., BUNYAVEJCHEWIN, S., GUNATILLEKE, S., GUNATILLEKE, N., HUBBELL, S. P., FOSTER, R. B., ITOH, A., LAFRANKIE, J. V., LEE, H. S., LOSOS, E., MANOKARAN, N., SUKUMAR, R. & YAMAKURA, T. 2000. Spatial patterns in the distribution of tropical tree species. Science 288:14141418.CrossRefGoogle ScholarPubMed
CONNELL, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Pp. 298313 in den Boer, P. J. & Gradwell, G. R. (eds.). Dynamics of populations. Centre for Agricultural Publication and Documentation, Wageningen.Google Scholar
CONNELL, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:13021310.CrossRefGoogle ScholarPubMed
CORLETT, R. T. 1998. Frugivory and seed dispersal by vertebrates in the Oriental (Indomalayan) Region. Biological Reviews of the Cambridge Philosophical Society 73:413448.CrossRefGoogle ScholarPubMed
DAVIES, S. J., PALMIOTTO, P. A., ASHTON, P. S., LEE, H. S. & LAFRANKIE, J. V. 1998. Comparative ecology of 11 sympatric species of Macaranga in Borneo: tree distribution in relation to horizontal and vertical resource heterogeneity. Journal of Ecology 86:662673.CrossRefGoogle Scholar
DEBSKI, I., BURSLEM, D. F. R. P., PALMIOTTO, P. A., LAFRANKIE, J. V., LEE, H. S. & MANOKARAN, N. 2002. Habitat preferences of Aporosa in two Malaysian forests: implication for abundance and coexistence. Ecology 83:20052018.CrossRefGoogle Scholar
DIGGLE, P. J. 1983. Statistical analysis of spatial point patterns. Academic Press, London. 148 pp.Google Scholar
FUJII, S., NISHIMURA, S. & YONEDA, T. 2006. Elevational distribution of Fagaceae in West Sumatra. Tropics 15:153163.CrossRefGoogle Scholar
GUNATILLEKE, C. V. S., GUNATILLEKE, I. A. U. N., ESUFALI, S., HARMS, K. E., ASHTON, P. M. S., BURSLEM, D. F. R. P., & ASHTON, P. S. 2006. Species-habitat association in a Sri Lankan dipterocarp forest. Journal of Tropical Ecology 22: 371384.CrossRefGoogle Scholar
GOVAERTS, R & FRODIN, D. G. 1998. World check list and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae and Ticodendraceae). Royal Botanical Garden, Kew. 407 pp.Google Scholar
GRUBB, P. J. 1977. The maintenance of species richness in plant communities: the importance of the regeneration niche. Biological Reviews of the Cambridge Philosophical Society 52:107145.CrossRefGoogle Scholar
HARMS, K. E., CONDIT, R., HUBBELL, S. P. & FOSTER, R. B. 2001. Habitat association of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology 89:947959.CrossRefGoogle Scholar
HE, F., LEGENDRE, P. & LAFRANKIE, J. V. 1996. Spatial pattern of diversity in a tropical rain forest in Malaysia. Journal of Biogeography 23:5774.CrossRefGoogle Scholar
HUBBELL, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Monographs in Population Biology 32. Princeton University Press, Princeton. 375 pp.Google Scholar
ITOH, A., YAMAKURA, T., OGINO, K., LEE, H. S. & ASHTON, P. S. 1997. Spatial distribution patterns of two predominant emergent trees in a tropical rainforest in Sarawak, Malaysia. Plant Ecology 132:121136.CrossRefGoogle Scholar
ITOH, A., YAMAKURA, T., OHKUBO, T., KANZAKI, M., PALMIOTTO, P. A., LAFRANKIE, J. V., ASHTON, P. S. & LEE, H. S. 2003. Importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rainforest. Ecological Research 18:307320.CrossRefGoogle Scholar
JANZEN, D. H. 1970. Herbivores and the numbers of tree species in tropical forests. American Naturalist 104:501528.CrossRefGoogle Scholar
KAMIYA, K., HARADA, K., OGINO, K., CLYDE, M. M. & LATIFF, A. M. 2003. Phylogeny and genetic variation of Fagaceae in tropical montane forests. Tropics 13:119125.CrossRefGoogle Scholar
KOCHUMMEN, K. M. 1989. Anacardiaceae. Pp. 957 in Whitmore, T. C. (ed.). Tree flora of Malaya, vol. 4. Malayan Forest Records no. 26. Forest Research Institute Malaysia & Ministry of Primary Industries, Petaling Jaya.Google Scholar
LEIGHTON, M. & LEIGHTON, D. 1983. Vertebrate responses to fruiting seasonality within a Bornean rain forest. Pp. 181196 in Sutton, S. L., Whitmore, T. C. & Chadwick, A. C. (eds.). Tropical rain forests: ecology and management. Blackwell Science, Oxford.Google Scholar
LOSOS, E. C. 1995. Habitat specificity of two palm species: experimental transplantation in Amazonian successional forest. Ecology 76:25952606.CrossRefGoogle Scholar
LOTWICK, H. W. & SILVERMAN, B. W. 1982. Methods for analyzing spatial processes of several types of points. Journal of the Royal Statistical Society B 44:406413.Google Scholar
MARRIOTT, F. H. C. 1979. Barnard's Monte Carlo tests: how many simulations? Applied Statistics 28:7577.CrossRefGoogle Scholar
NG, F. S. P. 1991. Manual of forest fruits, seeds and seedlings. Malayan Forest Records no. 34. Forest Research Institute Malaysia, Kepong. 400 pp.Google Scholar
NIIYAMA, K., ABDUL RAHMAN, K., IIDA, S., KIMURA, K., AZIZI, R. & APPANAH, S. 1999. Spatial patterns of common tree species relating to topography, canopy gaps and understory vegetation in a hill dipterocarp forest at Semangkok Forest Reserve, Peninsular Malaysia. Journal of Tropical Forest Science 11:731745.Google Scholar
NISHIMURA, S., YONEDA, T., FUJII, S., MUKHTAR, E., ABE, H. & KANZAKI, M. 2006a. Factors influencing the floristic composition of a hill forest in West Sumatra. Tropics 15:165175.CrossRefGoogle Scholar
NISHIMURA, S., YONEDA, T., FUJII, S., MUKHTAR, E., ABE, H., KUBOTA, D., TAMIN, R. & WATANABE, H. 2006b. Altitudinal zonation of vegetation in the Padang region, West Sumatra, Indonesia. Tropics 15:138152.CrossRefGoogle Scholar
NOGUCHI, H., ITOH, A., MIZUNO, T., SRI-NGERNYUANG, K., KANZAKI, M., TEEJUNTUK, S., SUNGPALEE, W., HARA, M., OHKUBO, T., SAHUNALU, P., DHANMMANONDA, P. & YAMAKURA, T. 2007. Habitat divergence in sympatric Fagaceae tree species of a tropical montane forest in northern Thailand. Journal of Tropical Ecology 23:110.CrossRefGoogle Scholar
PALMIOTTO, P. A., DAVIES, S. J., VOGT, K. A., ASHTON, M. S., VOGT, D. J. & ASHTON, P. S. 2004. Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. Journal of Ecology 92:609623.CrossRefGoogle Scholar
PAOLI, G. D., CURRAN, L. M. & ZAK, D. R. 2006. Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees. Journal of Ecology 92:609623.Google Scholar
PHILLIPS, O. L., VARGAS, P. N., MONTEAGUDO, A. L., CRUZ, A. P., ZANS, M. C., SÁNCHEZ, W. G., YLI-HALLA, M. & ROSE, S. 2003. Habitat association among Amazonian tree species: a landscape-scale approach. Journal of Ecology 91:757775.CrossRefGoogle Scholar
PRIMACK, R. B. & MIAO, S. L. 1992. Dispersal can limit local plant distribution. Conservation Biology 6:513519.CrossRefGoogle Scholar
RIPLEY, B. D. 1977. Modeling spatial patterns. Journal of the Royal Statistical Society B 39:172192.Google Scholar
SOEPADMO, E. 1972. Fagaceae. Pp. 265403 in van Steenis, C. G. G. J. (ed.). Flora Malesiana, series I, vol. 7. Martinus Nijhoff Publishers, The Hague.Google Scholar
SOEPADMO, E. 1995. Plant diversity of the Malesian tropical rainforest and its phytogeographical and economic significance. Pp. 1940 in Primack, R. B. & Lovejoy, T. E. (eds.). Conservation and management of Southeast Asian rain forests. Yale University Press, New Haven.CrossRefGoogle Scholar
SRI-NGERNYUANG, K., KANZAKI, M., MIZUNO, T., NOGUCHI, H., TEEJUNTUK, S., SUNGPALEE, C., HARA, M., YAMAKURA, T., SAHUNALU, P., DHANMMANONDA, P. & BUNYAVEJCHEWIN, S. 2003. Habitat differentiation of Lauraceae species in a tropical lower montane forest in northern Thailand. Ecological Research 18:114.CrossRefGoogle Scholar
SVENNING, J-C. 1999. Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. Journal of Ecology 87:5565.CrossRefGoogle Scholar
SYMINGTON, D. F. 1943. Foresters’ manual of dipterocarps. Malayan Forest Records no. 16 (reprinted in 1974). University of Malaya Press, Kuala Lumpur. 519 pp.Google Scholar
TILMAN, D. & PACALA, S. W. 1993. The maintenance of species richness in plant communities. Pp. 1325 in Ricklefs, R. E. & Schluter, D (eds.). Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
VANDER WALL, S. B. 2001. The evolutionary ecology of nut dispersal. Botanical Review 67:74117.CrossRefGoogle Scholar
VERHOEVEN, K. J. F., SIMONSEN, K. L. & MCINTYRE, L. M. 2005. Implementing false discovery rate control: increasing your power. Oikos 108:643647.CrossRefGoogle Scholar
WEBB, C. O. & PEART, D. R. 2000. Habitat associations of trees and seedlings in a Bornean rain forest. Journal of Ecology 88:464478.CrossRefGoogle Scholar
WYATT-SMITH, J. 1963. Manual of Malayan silviculture for inland forests. Malayan Forest Records no. 23 (reprinted in 1995). Forest Research Institute Malaysia, Kepong.Google Scholar
YAMADA, T., YAMAKURA, T., KANZAKI, M., ITOH, A., OHKUBO, T., OGINO, K., CHAI, E. O. K., LEE, H. S. & ASHTON, P. S. 1997. Topography-dependent spatial pattern and habitat segregation of sympatric Scaphium species in a tropical rain forest at Lambir. Sarawak. Tropics 7:5766.CrossRefGoogle Scholar
YAMADA, T., TOMITA, A., ITOH, A., YAMAKURA, T., OHKUBO, T., KANZAKI, M., TAN, S. & ASHTON, P. S. 2006. Habitat associations of Sterculiaceae trees in a Bornean rain forest plot. Journal of Vegetation Science 17:559566.Google Scholar
YAMADA, T., ZUIDEMA, P. A., ITOH, A., YAMAKURA, T., OHKUBO, T., KANZAKI, M., TAN, S. & ASHTON, P. S. 2007. Strong habitat preference of a tropical rain forest tree does not imply large difference in population dynamics across habitat. Journal of Ecology 95:332342.CrossRefGoogle Scholar
YAMAKURA, T., KANZAKI, M., ITOH, A., OHKUBO, T., OGINO, K., CHAI, E. O. K., LEE, H. S. & ASHTON, P. S. 1995. Topography of a large-scale research plot established within a tropical rain forest at Lambir, Sarawak. Tropics 5:4156.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spatial patterns and habitat associations of Fagaceae in a hill dipterocarp forest in Ulu Gadut, West Sumatra
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Spatial patterns and habitat associations of Fagaceae in a hill dipterocarp forest in Ulu Gadut, West Sumatra
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Spatial patterns and habitat associations of Fagaceae in a hill dipterocarp forest in Ulu Gadut, West Sumatra
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *