Skip to main content Accessibility help
Hostname: page-component-558cb97cc8-5hmnr Total loading time: 0.36 Render date: 2022-10-06T20:27:53.388Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Soil texture and altitude, respectively, largely determine the floristic gradient of the most diverse fog oasis in the Peruvian desert

Published online by Cambridge University Press:  11 July 2013

Jannes Muenchow*
Institute of Geography, University of Erlangen-Nuremberg, Kochstr. 4/4, 91054 Erlangen, Germany
Simon Hauenstein
Institute of Geography, University of Erlangen-Nuremberg, Kochstr. 4/4, 91054 Erlangen, Germany
Achim Bräuning
Institute of Geography, University of Erlangen-Nuremberg, Kochstr. 4/4, 91054 Erlangen, Germany
Rupert Bäumler
Institute of Geography, University of Erlangen-Nuremberg, Kochstr. 4/4, 91054 Erlangen, Germany
Eric Frank Rodríguez
Institute of Geography, University of Erlangen-Nuremberg, Kochstr. 4/4, 91054 Erlangen, Germany
Henrik von Wehrden
Institute of Geography, University of Erlangen-Nuremberg, Kochstr. 4/4, 91054 Erlangen, Germany
1Corresponding author. Email:


Studying species turnover along gradients is a key topic in tropical ecology. Crucial drivers, among others, are fog deposition and soil properties. In northern Peru, a fog-dependent vegetation formation develops on mountains along the hyper-arid coast. Despite their uniqueness, these fog oases are largely uninvestigated. This study addresses the influence of environmental factors on the vegetation of these unique fog oases. Accordingly, vegetation and soil properties were recorded on 66 4 × 4-m plots along an altitudinal gradient ranging from 200 to 950 m asl. Ordination and modelling techniques were used to study altitudinal vegetation belts and floristic composition. Four vegetation belts were identified: a low-elevation Tillandsia belt, a herbaceous belt, a bromeliad belt showing highest species richness and an uppermost succulent belt. Different altitudinal levels might reflect water availability, which is highest below the temperature inversion at around 700 m asl. Altitude alone explained 96% of the floristic composition. Soil texture and salinity accounted for 88%. This is in contrast with more humid tropical ecosystems where soil nutrients appear to be more important. Concluding, this study advances the understanding of tropical gradients in fog-dependent and ENSO-affected ecosystems.

Research Article
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



ABD EL-GHANI, M., ABO EL-KHEIR, M., ABDEL-DAYEM, M. & ABD EL-HAMID, M. 2011. Vegetation analysis and soil characteristics of five common desert climbing plants in Egypt. Turkish Journal of Botany 35:561580.Google Scholar
AH-PENG, C., WILDING, N., KLUGE, J., DESCAMPS-JULIEN, B., BARDAT, J., CHUAH-PETIOT, M., STRASBERG, D. & HEDDERSON, T. A. J. 2012. Bryophyte diversity and range size distribution along two altitudinal gradients: continent vs. island. Acta Oecologica 42:5865.CrossRefGoogle Scholar
ASHTON, P. S. 2003. Floristic zonation of tree communities on wet tropical mountains revisited. Perspectives in Plant Ecology, Evolution and Systematics 6:87104.CrossRefGoogle Scholar
BARBIER, E. B., KOCH, E. W., SILLIMAN, B. R., HACKER, S. D., WOLANSKI, E., PRIMAVERA, J., GRANEK, E. F., POLASKY, S., ASWANI, S., CRAMER, L. A., STOMS, D. M., KENNEDY, C. J., BAEL, D., KAPPEL, C. V., PERILLO, G. M. E. & REED, D. J. 2008. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319:321323.CrossRefGoogle ScholarPubMed
BECK, E., BENDIX, J., KOTTKE, I., MAKESCHIN, F. & MOSANDL, R. (eds.) 2008. Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin. 542 pp.CrossRefGoogle Scholar
BENDIX, J., TRACHTE, K., PALACIOS, E., ROLLENBECK, R., GÖTTLICHER, D., NAUSS, T. & BENDIX, A. 2011. El Niño meets La Niña – anomalous rainfall patterns in the “traditional” El Niño region of Southern Ecuador. Erdkunde 65:151167.CrossRefGoogle Scholar
BLUNDO, C., MALIZIA, L. R., BLAKE, J. G. & BROWN, A. D. 2012. Tree species distribution in Andean forests: influence of regional and local factors. Journal of Tropical Ecology 28:8395.CrossRefGoogle Scholar
BORCARD, D., LEGENDRE, P. & DRAPEAU, P. 1992. Partialling out the spatial component of ecological variation. Ecology 73:10451055.CrossRefGoogle Scholar
BREHM, G., COLWELL, R. K. & KLUGE, J. 2007. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Global Ecology and Biogeography 16:205219.CrossRefGoogle Scholar
COLWELL, R. K., RAHBEK, C. & GOTELLI, N. J. 2004. The mid-domain effect and species richness patterns:what have we learned so far? American Naturalist 163:E123.CrossRefGoogle ScholarPubMed
CORTINA-VILLAR, S., PLASCENCIA-VARGAS, H., VACA, R., SCHROTH, G., ZEPEDA, Y., SOTO-PINTO, L. & NAHED-TORAL, J. 2012. Resolving the conflict between ecosystem protection and land use in protected areas of the Sierra Madre de Chiapas, Mexico. Environmental Management 49:649662.CrossRefGoogle ScholarPubMed
DILLON, M. O. 2005. The Solanaceae of the Lomas formations of coastal Peru and Chile. Pp. 131155 in Keating, R. C., Hollowell, V. C. & Croat, T. B. (eds.). A Festschrift for William G. D’Arcy. Missouri Botanical Garden, St. Louis.Google Scholar
DILLON, M. O. & RUNDEL, P. W. 1990. The botanical response of the Atacama and Peruvian Desert floras to the 1982–83 El Niño event. Pp. 487504 in Glynn, P. W. (ed.). Global ecological consequences of the 1982–83 El Niño Southern Oscillation. Elsevier Oceanographic Series 52, Amsterdam.CrossRefGoogle Scholar
DILLON, M. O., NAKAZAWA, M. & LEIVA, S. G. 2003. The Lomas formations of coastal Peru: composition and biogeographic history. Pp. 19 in Haas, J. & Dillon, M. O. (eds.). El Nino in Peru: biology and culture over 10,000 years. Field Museum of Natural History, Chicago.Google Scholar
ECKARDT, F. D., SODERBERG, K., COOP, L. J., MULLER, A. A., VICKERY, K. J., GRANDIN, R. D., JACK, C., KAPALANGA, T. S. & HENSCHEL, J. 2013. The nature of moisture at Gobabeb, in the central Namib Desert. Journal of Arid Environments 93:719.CrossRefGoogle Scholar
ESPINOSA, C. I., CABRERA, O., LUZURIAGA, A. L. & ESCUDERO, A. 2011. What factors affect diversity and species composition of endangered Tumbesian dry forests in Southern Ecuador? Biotropica 43:1522.CrossRefGoogle Scholar
FRALEY, C. & RAFTERY, A. E. 2002. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 97:611631.CrossRefGoogle Scholar
GONZÁLEZ, A. L., FARINA, J. M., PINTO, R., PEREZ, C., WEATHERS, K. C., ARMESTO, J. J. & MARQUET, P. A. 2011. Bromeliad growth and stoichiometry: responses to atmospheric nutrient supply in fog-dependent ecosystems of the hyper-arid Atacama Desert, Chile. Oecologia 167:835845.CrossRefGoogle ScholarPubMed
GRYTNES, J. A. 2003. Ecological interpretations of the mid-domain effect. Ecology Letters 6:883888.CrossRefGoogle Scholar
GRYTNES, J. A. & BEAMAN, J. H. 2006. Elevational species richness patterns for vascular plants on Mount Kinabalu, Borneo. Journal of Biogeography 33:18381849.CrossRefGoogle Scholar
HILL, M. O. & GAUCH, H. G. 1980. Detrended Correspondence Analysis: an improved ordination technique. Vegetatio 42:4758.CrossRefGoogle Scholar
KATTAN, G. H. & FRANCO, P. 2004. Bird diversity along elevational gradients in the Andes of Colombia: area and mass effects. Global Ecology and Biogeography 13:451458.CrossRefGoogle Scholar
KESSLER, M. 2001. Pteridophyte species richness in Andean forests in Bolivia. Biodiversity and Conservation 10:14731495.CrossRefGoogle Scholar
KRUSKAL, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:127.CrossRefGoogle Scholar
LALLEY, J. S. & VILES, H. A. 2005. Terricolous lichens in the northern Namib Desert of Namibia: distribution and community composition. Lichenologist 37:7791.CrossRefGoogle Scholar
LAURANCE, S. G. W., LAURANCE, W. F., ANDRADE, A., FEARNSIDE, P. M., HARMS, K. E., VICENTINI, A. & LUIZAO, R. C. C. 2010. Influence of soils and topography on Amazonian tree diversity: a landscape-scale study. Journal of Vegetation Science 21:96106.CrossRefGoogle Scholar
LI, J., ZHAO, C. Y., SONG, Y. J., SHENG, Y. & ZHU, H. 2010. Spatial patterns of desert annuals in relation to shrub effects on soil moisture. Journal of Vegetation Science 21:221232.CrossRefGoogle Scholar
LIU, W. J., MENG, F. R., ZHANG, Y. P., LIU, Y. H. & LI, H. M. 2004. Water input from fog drip in the tropical seasonal rain forest of Xishuangbanna, South-West China. Journal of Tropical Ecology 20:517524.CrossRefGoogle Scholar
LOPEZ, B. C., RODRIGUEZ, R., GRACIA, C. A. & SABATÉ, S. 2006. Climatic signals in growth and its relation to ENSO events of two Prosopis species following a latitudinal gradient in South America. Global Change Biology 12:897906.CrossRefGoogle Scholar
MENGEL, K. & KIRKBY, E. A. 2001. Principles of plant nutrition. Fifth edition. Kluwer Academic Publishers, Dordrecht. 849 pp.CrossRefGoogle Scholar
MUENCHOW, J., BRENNING, A. & RICHTER, M. 2012. Geomorphic process rates of landslides along a humidity gradient in the tropical Andes. Geomorphology 139–140:271284.CrossRefGoogle Scholar
MUENCHOW, J., FEILHAUER, H., BRÄUNING, A., RODRÍGUEZ, E. F., BAYER, F., RODRÍGUEZ, R. A. & VON WEHRDEN, H. 2013a. Coupling ordination techniques and GAM to spatially predict vegetation assemblages along a climatic gradient in an ENSO-affected region of extremely high climate variability. Journal of Vegetation Science. doi: 10.1111/jvs.12038.CrossRefGoogle Scholar
MUENCHOW, J., BRÄUNING, A., RODRÍGUEZ, E. F. & VON WEHRDEN, H. 2013b. Predictive mapping of species richness and plant species’ distributions of a Peruvian fog oasis. Biotropica. doi: 10.1111/btp.12049.CrossRefGoogle Scholar
ONO, M. 1986. Definition, classification and taxonomic significance of the lomas vegetation. Pp. 514 in Ono, M. (ed.). Taxonomic and ecological studies on the Lomas vegetation in the Pacific coast of Peru. Tokyo Metropolitan University Makino Herbarium, Tokyo.Google Scholar
PAGE, A. L., BLACK, C. A., MILLER, R. H. & KLUTE, A. 1982. Methods of soil analysis: Part 2. Chemical and microbiological properties. Second edition. American Society of Agronomy, Madison, WI.Google Scholar
PEÑA-CLAROS, M., POORTER, L., ALARCON, A., BLATE, G., CHOQUE, U., FREDERICKSEN, T. S., JUSTINIANO, M. J., LEANO, C., LICONA, J. C., PARIONA, W., PUTZ, F. E., QUEVEDO, L. & TOLEDO, M. 2012. Soil effects on forest structure and diversity in a moist and a dry tropical forest. Biotropica 44:276283.CrossRefGoogle Scholar
PINTO, R., BARRIA, I. & MARQUET, P. A. 2006. Geographical distribution of Tillandsia lomas in the Atacama Desert, northern Chile. Journal of Arid Environments 65:543552.CrossRefGoogle Scholar
PITMAN, N. C. A., WIDMER, J., JENKINS, C. N., STOCKS, G., SEALES, L., PANIAGUA, F. & BRUNA, E. M. 2011. Volume and geographical distribution of ecological research in the Andes and the Amazon, 1995–2008. Tropical Conservation Science 4:6481.CrossRefGoogle Scholar
POPE, G. A., DORN, R. I. & DIXON, J. C. 1995. A new conceptual model for understanding geographical variations in weathering. Annals of the Association of American Geographers 85:3864.Google Scholar
RAHBEK, C. 1995. The elevational gradient of species richness: a uniform pattern? Ecography 18:200205.CrossRefGoogle Scholar
RAHBEK, C. 2005. The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters 8:224239.CrossRefGoogle Scholar
RAHBEK, C. & GRAVES, G. R. 2001. Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences USA 98:45344539.CrossRefGoogle ScholarPubMed
RODRÍGUEZ, L. C. 1996. Lomas del Cerro Campana: estudio geológico y geomorfológico. Arnaldoa 4:95101.Google Scholar
ROLLENBECK, R., BENDIX, J. & FABIAN, P. 2011. Spatial and temporal dynamics of atmospheric water inputs in tropical mountain forests of South Ecuador. Hydrological Processes 25:344352.CrossRefGoogle Scholar
RONNENBERG, K. & WESCHE, K. 2011. Effects of fertilization and irrigation on productivity, plant nutrient contents and soil nutrients in southern Mongolia. Plant and Soil 340:239251.CrossRefGoogle Scholar
RUNDEL, P. W. 1978. Ecological relationships of desert fog zone lichens. Bryologist 81:277293.CrossRefGoogle Scholar
RUNDEL, P. W. & DILLON, M. O. 1998. Ecological patterns in the Bromeliaceae of the lomas formations of Coastal Chile and Peru. Plant Systematics and Evolution 212:261278.CrossRefGoogle Scholar
SAGÁSTEGUI, A., MOSTACERO, J. & LOPEZ, S. 1988. Fitoecología del Cerro Campana (Provincia de Trujillo). Boletín de la Sociedad Botánica de la Libertad 14:147.Google Scholar
SARKAR, D. 2008. Lattice: multivariate data visualization with R. Springer, New York. 296 pp.CrossRefGoogle Scholar
SANCHEZ-CORDERO, V. 2001. Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico. Global Ecology and Biogeography 10:6376.CrossRefGoogle Scholar
SANDEL, B. S. & MCKONE, M. J. 2006. Reconsidering null models of diversity: do geometric constraints on species ranges necessarily cause a mid-domain effect? Diversity and Distributions 12:467474.CrossRefGoogle Scholar
SARMIENTO, G., DA SILVA, M. P., NARANJO, M. E. & PINILLOS, M. 2006. Nitrogen and phosphorus as limiting factors for growth and primary production in a flooded savanna in the Venezuelan Llanos. Journal of Tropical Ecology 22:203212.CrossRefGoogle Scholar
SCHLICHTING, E., BLUME, H.-P. & STAHR, K. 1995. Bodenkundliches Praktikum: eine Einführung in pedologisches Arbeiten für Ökologen, insbesondere Land- und Forstwirte, und für Geowissenschaftler. Second revised edition. Blackwell Wissenschafts-Verlag, Berlin. 295 pp.Google Scholar
SCHULZ, N., ACEITUNO, P. & RICHTER, M. 2011. Phytogeographic divisions, climate change and plant dieback along the coastal desert of Northern Chile. Erdkunde 65:169187.CrossRefGoogle Scholar
SITTERS, J., HOLMGREN, M., STOORVOGEL, J. J. & LOPEZ, B. C. 2012. Rainfall-tuned management facilitates dry forest recovery. Restoration Ecology 20:3342.CrossRefGoogle Scholar
SOETHE, N., LEHMANN, J. & ENGELS, C. 2008. Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology 24:397406.CrossRefGoogle Scholar
SQUEO, F. A., TRACOL, Y., LÓPEZ, D., GUTIÉRREZ, J. R., CORDOVA, A. M. & EHLERINGER, J. R. 2006. ENSO effects on primary productivity in Southern Atacama desert. Advances in Geosciences 6:128.CrossRefGoogle Scholar
TERBORGH, J. 1971. Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of the Cordillera Vilcabamba, Peru. Ecology 52:2340.CrossRefGoogle Scholar
TUOMISTO, H., POULSEN, A. D., RUOKOLAINEN, K., MORAN, R. C., QUINTANA, C., CELI, J. & CANAS, G. 2003. Linking floristic patterns with soil heterogeneity and satellite imagery in Ecuadorian Amazonia. Ecological Applications 13:352371.CrossRefGoogle Scholar
VIGLIZZO, E. F., PARUELO, J. M., LATERRA, P. & JOBBAGY, E. G. 2012. Ecosystem service evaluation to support land-use policy. Agriculture Ecosystems and Environment 154:7884.CrossRefGoogle Scholar
VILES, H. A. & GOUDIE, A. S. 2013. Weathering in the central Namib Desert, Namibia: controls, processes and implications. Journal of Arid Environments 93:2029.CrossRefGoogle Scholar
WANG, Z. M., ZHANG, B., SONG, K. S., LIU, D. W., REN, C. Y., ZHANG, S. M., HU, L. J., YANG, H. J. & LIU, Z. M. 2009. Landscape and land-use effects on the spatial variation of soil chemical properties. Communications in Soil Science and Plant Analysis 40:23892412.CrossRefGoogle Scholar
WESCHE, K. & WEHRDEN, H. 2011. Surveying Southern Mongolia: application of multivariate classification methods in drylands with low diversity and long floristic gradients. Applied Vegetation Science 14:561570.CrossRefGoogle Scholar
WHITE, D. A. & HOOD, C. S. 2004. Vegetation patterns and environmental gradients in tropical dry forests of the northern Yucatan Peninsula. Journal of Vegetation Science 15:151160.CrossRefGoogle Scholar
WHITFORD, W. G. & STEINBERGER, Y. 2011. Effects of simulated storm sizes and nitrogen on three Chihuahuan Desert perennial herbs and a grass. Journal of Arid Environments 75:861864.CrossRefGoogle Scholar
WHITTAKER, R. H. 1972. Evolution and measurement of species diversity. Taxon 21:213251.CrossRefGoogle Scholar
WHITTAKER, R. H. & NIERING, W. 1965. Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. Ecology 46:429452.CrossRefGoogle Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Soil texture and altitude, respectively, largely determine the floristic gradient of the most diverse fog oasis in the Peruvian desert
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Soil texture and altitude, respectively, largely determine the floristic gradient of the most diverse fog oasis in the Peruvian desert
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Soil texture and altitude, respectively, largely determine the floristic gradient of the most diverse fog oasis in the Peruvian desert
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *