Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-n9pbb Total loading time: 0.181 Render date: 2021-09-18T14:36:14.247Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Significance of the localization of phosphorus among tissues on a cross-section of leaf lamina of Bornean tree species for phosphorus-use efficiency

Published online by Cambridge University Press:  13 June 2017

Yuki Tsujii*
Affiliation:
Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606–8502 Kyoto, Japan
Masakazu Oikawa
Affiliation:
National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263–8555, Japan
Kanehiro Kitayama
Affiliation:
Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, 606–8502 Kyoto, Japan
*Corresponding
*Corresponding author. Email: yukitsuj@gmail.com

Abstract:

A greater relative allocation of phosphorus (P) to photosynthetically active cells functions to maintain a rapid photosynthesis under P limitation, and may be a key mechanism of plants to use P efficiently. This mechanism has not been studied in tropical trees despite the productivity of tropical forests often being limited by P. In this study, the spatial distribution of P among tissues on a cross-section of leaf lamina was analysed for 13 tree species from P-limited sites on Mount Kinabalu, Borneo. Most species showed greater P concentration in palisade mesophyll than in spongy mesophyll and epidermal tissues, suggesting that tropical trees under P limitation localize foliar P in photosynthetic palisade mesophyll.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BERENDSE, F. & AERTS, R. 1987. Nitrogen-use-efficiency: a biologically meaningful definition? Functional Ecology 1:293296.Google Scholar
CHOONG, M. F., LUCAS, P. W., ONG, J. S. Y., PEREIRA, B., TAN, H. T. W. & TURNER, I. M. 1992. Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytologist 121:597610.CrossRefGoogle Scholar
CLEVELAND, C. C., TOWNSEND, A. R., TAYLOR, P., ALVAREZ-CLARE, S., BUSTAMANTE, M. M. C., CHUYONG, G., DOBROWSKI, S. Z., GRIERSON, P., HARMS, K. E., HOULTON, B. Z., MARKLEIN, A., PARTON, W., PORDER, S., REED, S. C., SIERRA, C. A., SILVER, W. L., TANNER, E. V. J. & WIEDER, W. R. 2011. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology Letters 14:939947.CrossRefGoogle ScholarPubMed
CONN, S. & GILLIHAM, M. 2010. Comparative physiology of elemental distributions in plants. Annals of Botany 105:10811102.CrossRefGoogle Scholar
ESCUDERO, A., DEL ARCO, J. M., SANZ, I. C. & AYALA, J. 1992. Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia 90:8087.CrossRefGoogle ScholarPubMed
HAN, W., FANG, J., GUO, D. & ZHANG, Y. 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist 168:377385.CrossRefGoogle Scholar
HAWKINS, H. J., HETTASCH, H., MESJASZ-PRZYBYLOWICZ, J., PRZYBYLOWICZ, W. & CRAMER, M. D. 2008. Phosphorus toxicity in the Proteaceae: a problem in post-agricultural lands. Scientia Horticulturae 117:357365.CrossRefGoogle Scholar
HIDAKA, A. & KITAYAMA, K. 2009. Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients. Journal of Ecology 97:984991.CrossRefGoogle Scholar
HIDAKA, A. & KITAYAMA, K. 2011. Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo. Journal of Ecology 99:849857.CrossRefGoogle Scholar
KITAYAMA, K. 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149171.CrossRefGoogle Scholar
KITAYAMA, K. & AIBA, S. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90:3751.CrossRefGoogle Scholar
LAMBERS, H., CAWTHRAY, G. R., GIAVALISCO, P., KUO, J., LALIBERTÉ, E., PEARSE, S. J., SCHEIBLE, W.-R., STITT, M., TESTE, F. & TURNER, B. L. 2012. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytologist 196:10981108.CrossRefGoogle ScholarPubMed
LAMBERS, H., CLODE, P. L., HAWKINS, H. J., LALIBERTÉ, E., OLIVEIRA, R. S., REDDELL, P., SHANE, M. W., STITT, M. & WESTON, P. 2015. Metabolic adaptations of the non-mycotrophic Proteaceae to soil with a low phosphorus availability. Pp. 289336 in Plaxton, W. C. & Lambers, H. (eds). Annual plant reviews. Volume 48, phosphorus metabolism in plants. John Wiley & Sons, Hoboken.Google Scholar
OIKAWA, M., SUYA, N., KONISHI, T., ISHIKAWA, T. & HAMANO, T. 2015. Micro-PIXE analysis system at NIRS-electrostatic accelerator facility for various applications. International Journal of PIXE 25:217225.CrossRefGoogle Scholar
ONODA, Y., RICHARDS, L. & WESTOBY, M. 2012. The importance of leaf cuticle for carbon economy and mechanical strength. New Phytologist 196:441447.CrossRefGoogle ScholarPubMed
POORTER, H., NIINEMETS, Ü., POORTER, L., WRIGHT, I. J. & VILLAR, R. 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182:565588.CrossRefGoogle ScholarPubMed
SHANE, M. W., MCCULLY, M. E. & LAMBERS, H. 2004. Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). Journal of Experimental Botany 55:10331044.CrossRefGoogle Scholar
SULPICE, R., ISHIHARA, H., SCHLERETH, A., CAWTHRAY, G. R., ENCKE, B., GIAVALISCO, P., IVAKOV, A., ARRIVAULT, S., JOST, R., KROHN, N., KUO, J., LALIBERTÉ, E., PEARSE, S. J., RAVEN, J. A., SCHEIBLE, W.-R., TESTE, F., VENEKLAAS, E. J., STITT, M. & LAMBERS, H. 2014. Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species. Plant Cell and Environment 37:12761298.CrossRefGoogle ScholarPubMed
TAKYU, M., AIBA, S. & KITAYAMA, K. 2002. Effects of topography on tropical lower montane on Mount Kinabulu, Borneo. Plant Ecology 159:3549.CrossRefGoogle Scholar
VITOUSEK, P. M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285298.CrossRefGoogle Scholar
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Significance of the localization of phosphorus among tissues on a cross-section of leaf lamina of Bornean tree species for phosphorus-use efficiency
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Significance of the localization of phosphorus among tissues on a cross-section of leaf lamina of Bornean tree species for phosphorus-use efficiency
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Significance of the localization of phosphorus among tissues on a cross-section of leaf lamina of Bornean tree species for phosphorus-use efficiency
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *