Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-rfl4x Total loading time: 0.747 Render date: 2021-09-24T22:36:47.236Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Forest-fragment quality rather than matrix habitat shapes herbivory on tree recruits in South Africa

Published online by Cambridge University Press:  19 March 2013

Alexandra Botzat*
Affiliation:
Department of Ecology – Conservation Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, D-35032 Marburg, Germany
Lena Fischer
Affiliation:
Department of Ecology – Conservation Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, D-35032 Marburg, Germany
Nina Farwig
Affiliation:
Department of Ecology – Conservation Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, D-35032 Marburg, Germany
*
1Corresponding author. Email: abotzat@botlan.de

Abstract:

Forest fragmentation can alter herbivory on tree recruits with possible consequences for regeneration. We assessed effects of forest-fragment quality (tree diversity, vegetation complexity, relative abundance of pioneer trees) and matrix habitat on arthropods and herbivory in KwaZulu-Natal, South Africa. We compared arthropod abundances and herbivory on woody seedlings and saplings among four forest-fragment types differing in size and matrix (large fragments and small fragments surrounded by natural grassland, eucalypt and sugarcane plantations; nplots = 24) using analyses of covariance. We recorded 3385 arthropods and inspected 897 seedlings (71 species) and 876 saplings (91 species). Relative abundance of predators increased with fragment quality; that of herbivores decreased. Herbivory responses to fragment quality varied: seedling herbivory decreased with relative abundance of pioneers and sapling herbivory increased with vegetation complexity. Matrix effects were low with little variation in relative abundance of predators (0.39–0.53) and herbivores (0.22–0.32), proportion of seedling (8.3–11.0%) and sapling herbivory (12.4–14.3%) among the forest-fragment types. These findings indicate that herbivory on tree recruits is mediated by forest-fragment quality rather than matrix habitat. Future studies should evaluate whether contrasting effects of fragment quality on arthropods and herbivory are caused by weak trophic interactions and variable herbivore compositions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BALVANERA, P., PFISTERER, A. B., BUCHMANN, N., HE, J. S., NAKASHIZUKA, T., RAFFAELLI, D. & SCHMID, B. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters 9:11461156.CrossRefGoogle ScholarPubMed
BENÍTEZ-MALVIDO, J. & LEMUS-ALBOR, A. 2005. The seedling community of tropical rain forest edges and its interaction with herbivores and pathogens. Biotropica 37:301313.CrossRefGoogle Scholar
BIBBY, C. J., BURGESS, N. D., HILL, D. A. & MUSTOE, S. H. 2000. Bird census techniques. Academic Press, London. 302 pp.Google Scholar
BOON, R. 2010. Pooley's trees of eastern South Africa – a complete guide. Flora and Fauna Publications Trust, Durban. 624 pp.Google Scholar
CHAPLIN-KRAMER, R., O'ROURKE, M. E., BLITZER, E. J. & KREMEN, C. 2011. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecology Letters 14:922932.CrossRefGoogle ScholarPubMed
COATES PALGRAVE, M. 2005. Keith Coates Palgrave trees of Southern Africa. Struik Publishers, Cape Town. 1000 pp.Google Scholar
COLEY, P. D. 1980. Effects of leaf age and plant life-history patterns on herbivory. Nature 284:545546.CrossRefGoogle Scholar
COOPER, K. H. 1985. The conservation status of indigenous forests in the Transvaal, Natal and O.F.S., South Africa. Wildlife Society of Southern Africa, Durban. 108 pp.Google Scholar
CRAWLEY, M. J. 2007. The R book. John Wiley & Sons, Chichester. 951 pp.CrossRefGoogle Scholar
DALLING, J. W. & HUBBELL, S. P. 2002. Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species. Journal of Ecology 90:557568.CrossRefGoogle Scholar
EELEY, H. A. C., LAWES, M. J. & PIPER, S. E. 1999. The influence of climate change on the distribution of indigenous forest in KwaZulu-Natal, South Africa. Journal of Biogeography 26:595617.CrossRefGoogle Scholar
FAHRIG, L., BAUDRY, J., BROTONS, L., BUREL, F. G., CRIST, T. O., FULLER, R. J., SIRAMI, C., SIRIWARDENA, G. M. & MARTIN, J. L. 2011. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters 14:101112.CrossRefGoogle ScholarPubMed
FAVERI, S. B., VASCONCELOS, H. L. & DIRZO, R. 2008. Effects of Amazonian forest fragmentation on the interaction between plants, insect herbivores, and their natural enemies. Journal of Tropical Ecology 24:5764.CrossRefGoogle Scholar
GARCÍA-GUZMÁN, G. & DIRZO, R. 2001. Patterns of leaf-pathogen infection in the understory of a Mexican rain forest: incidence, spatiotemporal variation, and mechanisms of infection. American Journal of Botany 88:634645.CrossRefGoogle Scholar
HAYNES, K. J. & CRIST, T. O. 2009. Insect herbivory in an experimental agroecosystem: the relative importance of habitat area, fragmentation, and the matrix. Oikos 118:14771486.CrossRefGoogle Scholar
JACTEL, H. & BROCKERHOFF, E. G. 2007. Tree diversity reduces herbivory by forest insects. Ecology Letters 10:835848.CrossRefGoogle ScholarPubMed
LANGELLOTTO, G. A. & DENNO, R. F. 2004. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:110.CrossRefGoogle ScholarPubMed
LAURANCE, W. F., DELAMONICA, P., LAURANCE, S. G., VASCONCELOS, H. L. & LOVEJOY, T. E. 2000. Conservation – rainforest fragmentation kills big trees. Nature 404:836.CrossRefGoogle Scholar
LAURANCE, W. F., NASCIMENTO, H. E. M., laurance, S. G., ANDRADE, A. C., Fearnside, P. M., Ribeiro, J. E. L. & CAPRETZ, R. L. 2006. Rain forest fragmentation and the proliferation of successional trees. Ecology 87:469482.CrossRefGoogle ScholarPubMed
LAWES, M. J. 1990. The distribution of the samango monkey (Cercopithecus mitis erythrarchus Peters, 1852 and Cercopithecus mitis labiatus Geoffroy, I., 1843) and forest history in southern Africa. Journal of Biogeography 17:669680.CrossRefGoogle Scholar
LAWES, M. J., LAMB, B. C. C. & BOUDREAU, S. 2005. Area- but no edge-effect on woody seedling abundance and species richness in old Afromontane forest fragments. Journal of Vegetation Science 16:363372.CrossRefGoogle Scholar
LEIBOLD, M. A., CHASE, J. M., SHURIN, J. B. & DOWNING, A. L. 1997. Species turnover and the regulation of trophic structure. Annual Review of Ecology and Systematics 28:467494.CrossRefGoogle Scholar
MARON, J. L. & CRONE, E. 2006. Herbivory: effects on plant abundance, distribution and population growth. Proceedings of the Royal Society B–Biological Sciences 273:25752584.CrossRefGoogle ScholarPubMed
MCCANN, K., HASTINGS, A. & HUXEL, G. R. 1998. Weak trophic interactions and the balance of nature. Nature 395:794798.CrossRefGoogle Scholar
PICKER, M., GRIFFITHS, C. & WEAVING, A. 2004. Field guide to insects of South Africa. Struik Publishers, Cape Town. 440 pp.Google Scholar
POLIS, G. A., SEARS, A. L. W., HUXEL, G. R., STRONG, D. R. & MARON, J. 2000. When is a trophic cascade a trophic cascade? Trends in Ecology and Evolution 15:473475.CrossRefGoogle ScholarPubMed
RICHARDS, L. A. & COLEY, P. D. 2007. Seasonal and habitat differences affect the impact of food and predation on herbivores: a comparison between gaps and understory of a tropical forest. Oikos 116:3140.CrossRefGoogle Scholar
ROOT, R. B. 1973. Organization of a plant–arthropod association in simple and diverse habitats – fauna of collards (Brassica oleracea). Ecological Monographs 43:95120.CrossRefGoogle Scholar
RUIZ-GUERRA, B., GUEVARA, R., MARIANO, N. A. & DIRZO, R. 2010. Insect herbivory declines with forest fragmentation and covaries with plant regeneration mode: evidence from a Mexican tropical rain forest. Oikos 119:317325.CrossRefGoogle Scholar
SALA, O. E., CHAPIN, F. S., ARMESTO, J. J., BERLOW, E., BLOOMFIELD, J., DIRZO, R., HUBER-SANWALD, E., HUENNEKE, L. F., JACKSON, R. B., KINZIG, A., LEEMANS, R., LODGE, D. M., MOONEY, H. A., OESTERHELD, M., POFF, N. L., SYKES, M. T., WALKER, B. H., WALKER, M. & WALL, D. H. 2000. Biodiversity – global biodiversity scenarios for the year 2100. Science 287:17701774.CrossRefGoogle ScholarPubMed
SCHOLTZ, C. H. & HOLM, E. 1985. Insects of Southern Africa. Butterworths, Durban. 502 pp.Google Scholar
SCHULDT, A., BARUFFOL, M., BOHNKE, M., BRUELHEIDE, H., HARDTLE, W., LANG, A. C., NADROWSKI, K., VON OHEIMB, G., VOIGT, W., ZHOU, H. Z. & ASSMANN, T. 2010. Tree diversity promotes insect herbivory in subtropical forests of south-east China. Journal of Ecology 98:917926.CrossRefGoogle ScholarPubMed
SOBEK, S., SCHERBER, C., STEFFAN-DEWENTER, I. & TSCHARNTKE, T. 2009. Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany's largest connected deciduous forest. Oecologia 160:279288.CrossRefGoogle ScholarPubMed
STEFFAN-DEWENTER, I. 2003. Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows. Conservation Biology 17:10361044.CrossRefGoogle Scholar
TERBORGH, J., LOPEZ, L., NUÑEZ, P., RAO, M., SHAHABUDDIN, G., ORIHUELA, G., RIVEROS, M., ASCANIO, R., ADLER, G. H., LAMBERT, T. D. & BALBAS, L. 2001. Ecological meltdown in predator-free forest fragments. Science 294:19231926.CrossRefGoogle ScholarPubMed
TSCHARNTKE, T. & BRANDL, R. 2004. Plant–insect interactions in fragmented landscapes. Annual Review of Entomology 49:405430.CrossRefGoogle ScholarPubMed
TSCHARNTKE, T., KLEIN, A. M., KRÜSS, A., STEFFAN-DEWENTER, I. & THIES, C. 2005. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters 8:857874.CrossRefGoogle Scholar
TSCHARNTKE, T., BOMMARCO, R., CLOUGH, Y., CRIST, T. O., KLEIJN, D., RAND, T. A., TYLIANAKIS, J. M., VAN NOUHUYS, S. & VIDAL, S. 2007. Conservation biological control and enemy diversity on a landscape scale. Biological Control 43:294309.CrossRefGoogle Scholar
TYLIANAKIS, J. M., DIDHAM, R. K., BASCOMPTE, J. & WARDLE, D. A. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters 11:13511363.CrossRefGoogle ScholarPubMed
VALLADARES, G., SALVO, A. & CAGNOLO, L. 2006. Habitat fragmentation effects on trophic processes of insect–plant food webs. Conservation Biology 20:212217.CrossRefGoogle ScholarPubMed
WHITE, J. A. & WHITHAM, T. G. 2000. Associational susceptibility of cottonwood to a box elder herbivore. Ecology 81:17951803.CrossRefGoogle Scholar
WIRTH, R., MEYER, S. T., LEAL, I. R. & TABARELLI, M. 2008. Plant herbivore interactions at the forest edge. Progress in Botany 69:423448.CrossRefGoogle Scholar
6
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Forest-fragment quality rather than matrix habitat shapes herbivory on tree recruits in South Africa
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Forest-fragment quality rather than matrix habitat shapes herbivory on tree recruits in South Africa
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Forest-fragment quality rather than matrix habitat shapes herbivory on tree recruits in South Africa
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *