Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-jcfbx Total loading time: 0.292 Render date: 2022-01-25T03:06:04.049Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Biogeochemistry of an afrotropical montane rain forest on Mt. Kilimanjaro, Tanzania

Published online by Cambridge University Press:  21 December 2005

Marion Schrumpf
Affiliation:
Institute of Soil Science and Soil Geography, University of Bayreuth, Germany
Wolfgang Zech
Affiliation:
Institute of Soil Science and Soil Geography, University of Bayreuth, Germany
Jan C. Axmacher
Affiliation:
Institute of Biogeography, University of Bayreuth, Germany
Herbert V. M. Lyaruu
Affiliation:
Botany Department, University of Dar es Salaam, Tanzania

Abstract

In contrast to their well-studied counterparts in the Neotropics and in Asia, East African montane rain forests are surrounded by semi-arid savanna plains. These plains have a high erosion potential for salt crusts accumulated at the soil surface. Hence it may be hypothesized that East African montane forest ecosystems experience strongly enhanced nutrient inputs via dry deposition, which alters their overall biogeochemistry. The aim of our study was to test this hypothesis by investigating K, Mg, Ca, Na and N-forms in rainfall, throughfall, fine litter, litter percolate and soil solution of a montane rain forest at Mt. Kilimanjaro. Four forest plots situated at elevations between 2250 and 2350 m asl on the south-western slopes of Mt. Kilimanjaro were studied for 2 y. In contradiction to our hypothesis, inputs of K, Mg, Ca and Na via rainfall (7.5, 0.9, 2.3 and 6.2kg ha−1y−1) and throughfall (35, 2.0, 3.5 and 11kg ha−1−1) were low on Mt. Kilimanjaro. Fluxes of NH4-N and NO3-N were within the range observed at other montane rain forests, with NO3-N being the only nutrient partly absorbed in the forest canopies (2.9kg ha−1y−1 in rainfall, 0.9kg ha−1y−1 in throughfall). The highest overall nutrient concentrations in water samples occurred in litter percolate (1.4mg l−1 K, 0.3mg l−1 Mg, 0.8mg l−1 Ca, 0.3mg l−1 NH4-N, 0.9mg l−1 NO3-N), with values still being low compared to other sites. Nutrient concentrations in seepage water strongly declined with increasing soil depth. Thus, both inputs and losses of base cations from the forest by water pathways are assumed to be low. N or P limitation of growth is not expected since high fluxes of N and P in fine litter (119 and 5.9kg ha−1y−1 for N and P respectively) indicate low within-stand efficiency.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
17
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Biogeochemistry of an afrotropical montane rain forest on Mt. Kilimanjaro, Tanzania
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Biogeochemistry of an afrotropical montane rain forest on Mt. Kilimanjaro, Tanzania
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Biogeochemistry of an afrotropical montane rain forest on Mt. Kilimanjaro, Tanzania
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *