Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T16:42:13.651Z Has data issue: false hasContentIssue false

Trophic ecology of the zoanthid Palythoa caribaeorum (Cnidaria: Anthozoa) on tropical reefs

Published online by Cambridge University Press:  24 November 2014

Erika Flávia Crispim de Santana
Affiliation:
Universidade Federal da Paraíba, Pós-graduação em Ciências Biológicas-Zoologia, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil
Amanda Lacerda Alves
Affiliation:
Universidade Federal Rural de Pernambuco, Pós-graduação em Ecologia, Dois Irmãos, 52171-900 Recife, PE, Brazil
André De Melo Santos
Affiliation:
Universidade Federal de Pernambuco, Centro Acadêmico de Vitoria, Núcleo de Biologia, Rua do Alto do Reservatório s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brazil
Maria Da Gloria G.S. Cunha
Affiliation:
Universidade Federal de Pernambuco, Pós-graduação em Oceanografia, Cidade Universitária, 50670-901 Recife, PE, Brazil
Carlos Daniel Perez
Affiliation:
Universidade Federal de Pernambuco, Centro Acadêmico de Vitoria, Núcleo de Biologia, Rua do Alto do Reservatório s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brazil
Paula Braga Gomes*
Affiliation:
Universidade Federal Rural de Pernambuco, Pós-graduação em Ecologia, Dois Irmãos, 52171-900 Recife, PE, Brazil
*
Correspondence should be addressed to: P. B. Gomes, Universidade Federal Rural de Pernambuco, Pós-graduação em Ecologia, Dois Irmãos, 52171-900 Recife, PE, Brazil email: bragagomes@hotmail.com

Abstract

This study examined the trophic ecology of the zoanthid Palythoa caribaeorum in tropical reefs and evaluated its role in the energy flow in that ecosystem. Colonies of this species were sampled in the infralittoral zone of reefs in north-eastern Brazil in 2008. We calculated the richness, total abundance, relative abundance and frequency of occurrence of prey items. The biovolumes and weighted biovolumes of prey were calculated to characterize the most important food items in terms of their biomasses. To evaluate the selectivity, zoanthid and plankton samples were collected in 2010. Pennate diatoms were the most abundant and most frequent prey and, together with invertebrate eggs, constituted the most important food items in terms of their biomasses. There were no significant differences in abundance or richness among the different beaches studied, nor between the different seasons. The mean size of prey items within the polyps was significantly smaller than of the general plankton, indicating that P. caribaeorum selected for (or limited) certain prey sizes. This species predominantly fed on diatoms, and did not take advantage of many other prey items abundant in the plankton. Our results indicate that P. caribaeorum is suspensivorous and feeds principally on small phytoplankton. As this species is prey for benthic organisms such as polychaetes and nektonic organisms, our results indicate the importance of this zoanthid in tropical reef ecosystems as a primary consumer that serves as an energy transfer link between the planktonic environment and the nektonic and benthic spheres.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abelson, A., Miloh, T. and Loya, Y. (1993) Flow patterns induced by substrata and body morphologies of benthic organisms, and their roles in determining availability of food particles. Limnology and Oceanography 38, 11161124.CrossRefGoogle Scholar
Acosta, A. and Gonzalez, A.M. (2007) Fission in the zoantharia Palythoa caribaeorum (Duchassaing and Michelotti, 1860) populations: a latitudinal comparison. Boletin de Investigaciones Marinas y Costeras 36, 151165.Google Scholar
Barangé, M. (1988) Prey selection and capture strategies of the benthic hydroid Eudendrium racemosum. Marine Ecology Progress Series 47, 8388.CrossRefGoogle Scholar
Barradas, J.I., Amaral, F.D., Hernández, M.I.M., Flores-Montes, M.J. and Steiner, A.Q. (2010) Spatial distribution of benthic macroorganisms on reef flats at Porto de Galinhas Beach (northeastern Brazil), with special focus on corals and calcified hydroids. Biotemas 23, 6167.Google Scholar
Beers, J.R. (1966) Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda. Limnology and Oceanography 11, 520528.CrossRefGoogle Scholar
Birkeland, C. (1997) Life and death of coral reefs. 1st edition. New York, NY: Chapman & Hall.CrossRefGoogle Scholar
Bonaldo, R.M., Krajewski, J.P. and Sazima, I. (2005) Meals for two: foraging activity of the butterflyfish Chaetodon striatus (Perciformes) in southeast Brazil. Brazilian Journal of Biology 65, 211215.CrossRefGoogle ScholarPubMed
Brown, A.C. and McLachlan, A. (1990) Beach and surf-zone flora. In Brown, A.C. and McLachlan, A. (eds) Ecology of sandy shores. Amsterdam: Elsevier Science, pp. 4150.Google Scholar
Bruce, T., Meireles, P.M., Garcia, G., Paranhos, R., Rezende, C., Moura, R.L., Francini-Filho, R.B., Coni, E.O.C., Vasconcelos, A.T., Amado-Filho, G., Hatay, M., Schmieder, R., Edwards, R., Dinsdale, E. and Thompson, F.L. (2012) Abrolhos Bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data. PLoS ONE 7, e36687.CrossRefGoogle ScholarPubMed
Cole, A.J., Pratchett, M.S. and Jones, G. P. (2008) Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish and Fisheries 9, 286307.CrossRefGoogle Scholar
Coma, R., Gili, J.M., Zabala, M. and Riera, T. (1994) Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Marine Ecology Progress Series 115, 257270.CrossRefGoogle Scholar
Coma, R., Gili, J.M. and Zabala, M. (1995) Trophic ecology of a benthic marine hydroid, Campanularia everta. Marine Ecology Progress Series 119, 211220.CrossRefGoogle Scholar
Coma, R., Ribes, M., Orejas, C. and Gili, J.-M. (1999) Prey capture by a benthic coral reef hydrozoan. Coral Reefs 18, 141145.CrossRefGoogle Scholar
Connell, J.H. (1978) Diversity in tropical rain forests and coral reefs. Science 199, 13021310.CrossRefGoogle ScholarPubMed
Costa, C.F., Sassi, R., Gorlach-Lira, K., LaJeunesse, T.C. and Fitt, W.K. (2013) Seasonal changes in zooxanthellae harbored by zoanthids (Cnidaria, Zoanthidea) from coastal reefs in northeastern Brazil. Pan-American Journal of Aquatic Sciences 8, 253264.Google Scholar
Dight, I.J. and Scherl, L.M. (1997) The International Coral Reef Initiative (ICRI): global priorities for the conservation and management of coral reefs and the need for partnerships. Coral Reefs 16, 139147.CrossRefGoogle Scholar
Erez, J. (1990) On the importance of food sources in coral reef ecosystems. In Dubinsky, Z. (ed.) Ecosystems of the World, 25, Coral Reefs. Amsterdam: Elsevier Science, pp. 411418.Google Scholar
Eskinazi-Leça, E., Silva-Cunha, M.G., Koening, M.L., Macedo, S.J. and Costa, K.M.P. (1997) Variação espaço temporal do fitoplâncton na plataforma continental de Pernambuco – Brasil. Trabalhos Oceanográficos da Universidade Federal de Pernambuco 25, 116.Google Scholar
Fabricius, K.E. and Metzner, J. (2004) Scleractinian walls of mouths: predation on coral larvae by corals. Coral Reefs 23, 245248.CrossRefGoogle Scholar
Ferreira, B.P. and Maida, M. (2006) Monitoramento dos recifes de coral do Brasil: situação atual e perspectivas. MMA, Série Biodiversidade 18, 250.Google Scholar
Ferreira, L.C., Cunha, M.G.G.S., Koening, M.L., Feitosa, F.A.N., Santiago, M.F. and Muniz, K. (2010) Variação temporal do fitoplâncton em três praias do litoral sul do estado de Pernambuco, Nordeste do Brasil. Acta Botânica Brasílica 24, 214224.CrossRefGoogle Scholar
Francini-Filho, R.B., Coni, E.C.O., Meirelles, P.M., Amado-Filho, G.M., Thompson, F.L., Pereira-Filho, G.H., Bastos, A.C., Abrantes, D.P., Ferreira, C.M., Gibran, F.Z., Guth, A.Z., Sumida, P.YG., Oliveira, N.L., Kaufman, L., Minte-Vera, C.M. and Moura, R.L. (2013) Dynamics of coral reef benthic assemblages of the Abrolhos Bank, Eastern Brazil: inferences on natural and anthropogenic drivers. PLoS ONE 8, e54260.CrossRefGoogle ScholarPubMed
Francini-Filho, R.B. and Moura, R.L. (2010) Predation on the toxic zoanthid Palythoa caribaeorum by reef fishes in the Abrolhos Bank, eastern Brazil. Brazilian Journal of Oceanography 58, 7779.CrossRefGoogle Scholar
Genzano, G.N. (2005) Trophic ecology of a benthic intertidal hydroid, Tubularia crocea, at Mar del Plata, Argentina. Journal of the Marine Biological Association of the United Kingdom 85, 307312.CrossRefGoogle Scholar
Gomes, P.B., Lira, A.K.F., Naud, J-F., Santos, A.M. and Pérez, C.D. (2012) Prey selectivity of the octocoral Carijoa riisei at Pernambuco, Brazil. Anais da Academia Brasileira de Ciências 84, 157164.CrossRefGoogle ScholarPubMed
Hall, K.J., Weimer, W.C. and Fred Lee, G. (1970) Amino acids in an estuarine environment. Limnology and Oceanography 15, 162164.CrossRefGoogle Scholar
Hill, T. and Lewicki, P. (2006) Statistics: methods and applications. 1st edition. Tulsa, OK: StatSoft Inc.Google Scholar
Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, U. and Zohary, T. (1999) Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403424.CrossRefGoogle Scholar
Lasker, H.R. (1976) Intraspecific variability of zooplankton feeding in the hermatypic coral Montrastrea cavernosa. In Ginsburg, R.N. and Taylor, D.L. (eds) Proceedings of Third International Coral Reef Symposium, Rosenstiel School of Marine and Atmospheric Science, May 1976. Miami, FL: University of Miami Press 1, pp. 607–613.Google Scholar
Lewis, J.B. (1977) Processes of organic production on coral reefs. Biological Reviews 52, 305347.CrossRefGoogle Scholar
Lira, A.K.F., Naud, J-P., Gomes, P.B., Santos, A.M. and Perez, C.D. (2009) Trophic ecology of the octocoral Carijoa riisei from littoral of Pernambuco, Brazil. I. Composition and spatio-temporal variation of the diet. Journal of the Marine Biological Association of the United Kingdom 98, 8999.CrossRefGoogle Scholar
López-Fuerte, F.O., Beltrones, D.A.S. and Aguero, G.C. (2007) Biovolumen ponderado; índice para estimar la contribución de especies en asociaciones de diatomeas bentónicas. Hidrobiologica 17, 8386.Google Scholar
Louro, C.M.M., Pereira, M.A.M. and Costa, A.C.D. (2006) Relatório sobre o estado de conservação das tartarugas marinhas em Moçambique. Xai-Xai. CDS-ZC/MICOA, 42 pp.Google Scholar
Machado, R.C.A. (2009) Produtividade fitoplanctônica e hidrologia do ecossistema recifal de Porto de Galinhas (Pernambuco- Brasil). Master thesis. Universidade Federal de Pernambuco, Recife, Brasil.Google Scholar
Medeiros, C., Macedo, S.J., Feitosa, F.A.N. and Koening, M.L. (1999) Hydrography and phytoplankton biomass and abundance of North-East Brazilian waters. Archive of Fishery and Marine Research 47, 133151.Google Scholar
Mendonça-Neto, J.P., Ferreira, C.E.L., Chaves, L.C.T. and Pereira, R.C. (2008) Influence of Palythoa caribaeorum (Anthozoa, Cnidaria) zonation on site-attached reef fishes. Anais da Academia Brasileira de Ciências 80, 495513.CrossRefGoogle ScholarPubMed
Moberg, F. and Folke, C. (1999) Ecological goods and services of coral reef ecosystems. Ecological Economics 29, 215233.CrossRefGoogle Scholar
Muscatine, L., McCloskey, L.R. and Marian, R.E. (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnology and Oceanography 26, 601611.CrossRefGoogle Scholar
Oigman-Pszczol, S.S., Figueiredo, M.A.O. and Creed, J.C. (2004) Distribution of benthic communities on the tropical rocky subtidal of Armação dos Búzios, Southeastern Brazil. Marine Ecology 25, 173190.CrossRefGoogle Scholar
Orejas, C., Gili, J-M., López-González, P. and Arntz, W.E. (2001) Feeding strategies and diet composition of four Antarctic cnidarian species. Polar Biology 24, 620627.CrossRefGoogle Scholar
Osborne, P.L. (2000) Tropical ecosystems and ecological concepts. 1st edition. New York, NY: Cambridge University Press.Google Scholar
Padisák, J., Soróczki-Pintér, E. and Rezner, Z. (2003) Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton – an experimental study. Hydrobiology 500, 243257.CrossRefGoogle Scholar
Pérez, C.D., Vila-Nova, D.A. and Santos, A.M. (2005) Associated community with the zoanthid Palythoa caribaeorum (Duchassaing & Michelotti, 1860) (Cnidaria, Anthozoa) from littoral of Pernambuco, Brazil. Hydrobiologia 548, 207215.CrossRefGoogle Scholar
Piraino, S., Bouillon, J. and Boero, F. (1992) Halocordyle epizoica (Cnidaria, Hydrozoa), a hydroid that ‘bites’. Scientia Marina 56, 141147.Google Scholar
Porter, J.W. (1974) Zooplankton feeding by the Caribbean reef-building coral Montastrea cavernosa. In Cameron, A.M., Campbell, B.M., Cribb, A.B., Endean, R., Jell, J.S., Jones, O.A., Mather, P. and Talbot, F.H. (eds) Proceedings of the Second International Coral Reef Symposium, Brisbane, Australia, 22 June–2 July 1973. Brisbane: Great Barrier Reef Committee, 1, pp. 111–126.Google Scholar
Ribes, M., Coma, R. and Gili, J.M. (1998) Heterotrophic feeding by gorgonian corals with symbiotic zooxanthellae. Limnology and Oceanography 43, 11701179.CrossRefGoogle Scholar
Ribes, M., Coma, R. and Rossi, S. (2003) Natural feeding of the temperate asymbiotic octocoral gorgonian Leptogorgia sarmentosa (Cnidaria: Ocotocorallia). Marine Ecology Progress Series 254, 141150.CrossRefGoogle Scholar
Rossa, D.C., Bonecker, C.C. and Fulone, L.J. (2007) Rotifer biomass in freshwater environments: review of methods and influencing factors. Interciencia 32, 220226.Google Scholar
Rossi, S., Ribes, M., Coma, R. and Gili, J-M. (2004) Temporal variability in zooplankton prey capture rate of the passive suspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Marine Biology 144, 8999.CrossRefGoogle Scholar
Rotjan, R.D. and Lewis, S.M. (2008) Impact of coral predators on tropical reefs. Marine Ecology Progress Series 367, 7391.CrossRefGoogle Scholar
Rougerie, F., Fagerstrom, J.A. and Andrie, C. (1992) Geothermal endo-upwelling: a solution to the reef nutrient paradox? Continental Shelf Research 12, 785798.CrossRefGoogle Scholar
Sebens, K.P. (1977) Autotrophic and heterotrophic nutrition of coral reef zoanthids. In Ginsburg, R.N. and Taylor, D.L. (eds) Proceedings of Third International Coral Reef Symposium, Rosenstiel School of Marine and Atmospheric Science, May 1976. Miami, FL: University of Miami Press, 1, pp. 397–404.Google Scholar
Sebens, K.P. (1982) Intertidal distribution of zoanthids on the Caribbean coast of Panama: effects of predation and desiccation. Bulletin of Marine Science 32, 316335.Google Scholar
Sebens, K.P. and Koehl, M.A.R. (1984) Predation on zooplankton by the benthic anthozoans Alcyonium sidereum (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal. Marine Biology 81, 255271.CrossRefGoogle Scholar
Sebens, K.P., Vandersall, K.S., Savina, L.A. and Graham, K.R. (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Marine Biology 127, 303317.CrossRefGoogle Scholar
Smayda, T.J. (1978) From phytoplankton to biomass. In Sournia, A. (ed.) Phytoplankton manual. Monographs on oceanographic methodology 6. Paris: UNESCO, pp. 273279.Google Scholar
Smetacek, V. (1984) The supply of food to the benthos. In Fashman, M.J.R. (ed.) Flows of energy and materials in marine ecosystem: theory and practice. New York, NY: Plenum Press, pp. 517547.CrossRefGoogle Scholar
Souza, J.R.B., Rodrigues, H.A., Neves, B.M. and Pérez, C.D. (2007) First report of bristleworm predator of the reef octocoral Carijoa riisei. Coral Reefs 26, 1033.CrossRefGoogle Scholar
Stampar, S.N., Silva, P.F. and Luiz, O.J. Jr (2007) Predation on the zoanthid Palythoa caribaeorum (Anthozoa, Cnidaria) by a Hawksbill turtle (Eretmochelys imbricata) in Southeastern Brazil. Marine Turtle Newsletter 117, 35.Google Scholar
Suchanek, T.H. and Green, D.J. (1981) Interspecific competition between Palythoa caribaeorum and other sessile invertebrates on St. Croix reefs, U.S. Virgin Islands. In Gomez, E., Birkeland, C.E., Buddemeier, R.W., Johannes, R.E., Marsh, J.A. and Tsuda, R.T. (eds) Proceedings of the Fourth International Coral reef Symposium, Marine Sciences Centre, University of Philippines, 18–22 May 1981. Quezon City: University of Philippines Press, 2, pp. 679–684.Google Scholar
Svoboda, A. (1979) Beitrag zur Ökologie, Biometrie und Systematik der Mediterranean Aglaophenia arten (Hydroidea). Zoologische Verhndelingen 167, 3114.Google Scholar
Tsounis, G., Rossi, S., Laudien, J., Bramanti, L., Fernández, N., Gili, J-M and Arntz, W. (2006) Diet and seasonal prey capture rates in the Mediterranean red coral (Corallium rubrum L.). Marine Biology 149, 313325.CrossRefGoogle Scholar
Villaça, R. and Pitombo, F.B. (1997) Benthic communities of shallow-water reefs of Abrolhos, Brazil. Revista Brasileira de Oceanografia 45, 3543.CrossRefGoogle Scholar