Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T02:27:55.235Z Has data issue: false hasContentIssue false

Form changes in Amiantis purpurata (Bivalvia, Veneridae) shells over the past 100,000 years in North Patagonia (Argentina)

Published online by Cambridge University Press:  24 August 2015

M. Sol Bayer*
Affiliation:
Centro de Investigaciones en Ciencias de la Tierra (CICTERRA, CONICET-UNC), Avenida Vélez Sársfield 1611, (CPX5016GCA) Córdoba, Argentina Centro de Investigaciones Paleobiológicas (CIPAL), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Avenida Vélez Sársfield 299, (X5000JJC) Córdoba, Argentina
Enrique Morsan
Affiliation:
Instituto de Biología Marina y Pesquera Almirante Storni, Güemes 1030, (8520) San Antonio Oeste, Río Negro, Argentina
Sandra Gordillo
Affiliation:
Centro de Investigaciones en Ciencias de la Tierra (CICTERRA, CONICET-UNC), Avenida Vélez Sársfield 1611, (CPX5016GCA) Córdoba, Argentina Centro de Investigaciones Paleobiológicas (CIPAL), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Avenida Vélez Sársfield 299, (X5000JJC) Córdoba, Argentina
Gisela Moran
Affiliation:
Centro de Investigaciones en Ciencias de la Tierra (CICTERRA, CONICET-UNC), Avenida Vélez Sársfield 1611, (CPX5016GCA) Córdoba, Argentina
*
Correspondence should be addressed to:M. Sol Bayer, Centro de Investigaciones en Ciencias de la Tierra (CICTERRA, CONICET-UNC), Avenida Vélez Sársfield 1611, (CPX5016GCA) Córdoba, Argentina email: sol.bayer@conicet.gov.ar

Abstract

Amiantis purpurata shells from the San Matías Gulf (SMG) were analysed in order to compare both morphology and size throughout the late Quaternary in relation to environmental changes. Shells from modern beaches, Holocene marine assemblages (late Holocene, 3630 ± 100 years bp) and interglacial Pleistocene marine assemblages (MIS 5, 100 ka years bp) were studied by measuring the height and length, and using the elliptic Fourier analysis (EFA) to take an outline contour. The Pleistocene shells were smaller, more elliptical and with a deeper lunule than the Holocene and modern ones. No significant differences were recorded in the allometry index throughout the late Quaternary. The variation in size and shape of the A. purpurata shells could be related to the phenotypic plasticity of this species as a response to the environmental changes registered in the SMG during the Quaternary. These changes include variations in sea surface temperatures, salinities and substrates, and also water circulation changes, which would have modified nutrient availability. Morphological changes imply burrowing activity, mechanical stability, nutrient uptake and defence response to predation.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angulo, R., Fidalgo, F., Gomez Peral, M. and Schnack, E. (1978) Las ingresiones marinas Cuaternarias en la Bahía de San Antonio y sus vecindades, Prov. de Rio Negro. 7° Congreso Geológico Argentino Neuquén, Proceeding 1, 271283.Google Scholar
Ansell, A.D. (1962) Observations on burrowing in the Veneridae (Eulamellibranchia). Biological Bulletin 123, 521530.CrossRefGoogle Scholar
Bayer, M.S. and Gordillo, S. (2013) A new Pleistocene species of Glycymeris (Bivalvia, Glycymerididae) from northern Patagonia, Argentina. Ameghiniana 50, 265268.CrossRefGoogle Scholar
Bayer, M.S., Brey, T., Beierlein, L. and Gordillo, S. (2013) Late Quaternary climatic variability in northern Patagonia Argentina – information from modern and fossil shells of Amiantis purpurata (Bivalvia, Veneridae). Third International Sclerochronology Conference. Caernarfon, Wales. 18–22 May 2013, pp. 85.Google Scholar
Bayer, S., Gordillo, S. and Morsan, E. (2014) The relictual population of the purple clam Amiantis purpurata (L.) in northern Patagonia: the history of a warm-temperate Neogene survivor. Ameghiniana 51, 333343.Google Scholar
Barón, P.J., Real, L.E., Ciocco, N.F. and , M.E. (2004) Morphometry, groth and reproduction of an Atlantic population of the razor clam Ensis macha . Scientia Marina 68, 211217.CrossRefGoogle Scholar
Boretto, G., Baranzelli, M., Gordillo, S., Consolini, I., Zanchetta, G., and Moran, A.G. (2014) Shell morphometric variations in a Patagonian clam (Ameghinomya antiqua) from southern Argentina along the Mid-Pleistocene to the present. Quaternary International 352, 4858. doi: 10.1016/j.quaint.2014.09.033 Google Scholar
Camacho, H. (2007) Los invertebrados fósiles, 1st edn. Buenos Aires: Fundación de Historia Natural Félix de Azara. Universidad Maimónides.Google Scholar
Carcelles, A. (1944) Catálogo de los moluscos marinos de Puerto Quequén. Revista del Museo de La Plata 3, 233309.Google Scholar
Castellanos, Z.A. (1967) Catálogo de moluscos marinos bonaerenses. Anales de la Comisión de Investigaciones Científicas de la provincia de Buenos Aires 8, 365.Google Scholar
Charó, M.P., Gordillo, S. and Fucks, E.E. (2013) Paleoecological significance of Late Quaternary molluscan faunas of the Bahía San Blas area, Argentina. Quaternary International 301, 135149.Google Scholar
Charó, M.P., Gordillo, S., Fucks, E.E. and Giaconi, L.M. (2014) Late Quaternary molluscs from the northern San Matías Gulf (Northern Patagonia, Argentina), southwestern Atlantic: faunistic changes and paleoenvironmental interpretation. Quaternary International 352, 2647. doi: 10.1016/j.quaint.2013.12.044. CrossRefGoogle Scholar
Clapperton, C. (1993) Nature and environmental changes in South America at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 189208.Google Scholar
Clark, P.U. and Mix, A.C. (2002) Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews 21, 17.Google Scholar
Cledón, M. (2004) Reproductive biology and ecology of Adelomelon brasiliana (Mollusca: Gastropoda) off Buenos Aires, Argentina . PhD thesis. University of Bremen, Bremen, Germany.Google Scholar
Crampton, J.S. (1995) Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179186.Google Scholar
Crampton, J.S. and Maxwell, P.A. (2000) Size: all it's shaped up to be? Evolution of shape through the lifespan of the Cenozoic bivalve Spissatella (Crassatellidae). In Harper, E.M., Taylor, J.D. and Crame, J.A. (eds) Evolutionary biology of the Bivalvia. Geological Society of London Special Publication 177, 399423.Google Scholar
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. and Robledo, C.W. (2011) InfoStat v.2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar Google Scholar
Favier-Dubois, C.M. and Kokot, R. (2011) Changing scenarios in the Bajo de la Quinta San Matías Gulf, Northern Patagonia, Argentina: impact of geomorphologic processes in the human use of coastal habitats. Quaternary International 245, 103110.Google Scholar
Feruglio, E. (1950) Descripción geológica de la Patagonia. Yacimientos Petrolíferos Fiscales. Technical report No. 3, pp. 74196.Google Scholar
Freeman, H. (1974) Computer processing of line drawing image. Surveys 6, 5797.Google Scholar
Fucks, E.E., Schnak, E.J. and Charó, M. (2012) Aspectos geológicos y geomorfológicos del sector N del Golfo San Matías, Río Negro, Argentina. Revista de la Sociedad Geológica de España 25, 95105.Google Scholar
Gagliardini, D.A. and Rivas, A.L. (2004) Environmental characteristics of San Matías Gulf obtained from LANDSAT-TM and ETM+ data. Gayana 68, 186193.Google Scholar
Gaspar, M.B., Chícharo, L.M., Vasconcelos, P., García, P., Santos, A.R. and Monteiro, C.C. (2002a) Depth segregation phenomenon in Donax trunculus (Bivalvia: Donacidae) populations of the Algarve coast (southern Portugal). Scientia Marina 66, 111121.Google Scholar
Gaspar, M.B., Santos, M.N., Vasconcelos, P. and Monteiro, C.C. (2002b) Shell morphometric relationships of the most common bivalve species (Mollusc: Bivalvia) of the Algarve coast (southern Portugal). Hydrobiologia 477, 7380.Google Scholar
Gordillo, S., Márquez, F., Cárdenas, J. and Zubimendi, M.A. (2011) Shell variability in Tawera gayi (Veneridae) from southern South America: a morphometric approach based on contour analysis. Journal of the Marine Biological Association of the United Kingdom 91, 815822.Google Scholar
Gordillo, S., Bayer, M.S., Boretto, G. and Charó, M. (2014) Mollusk shells as bio-geo-archives. Evaluating environmental changes during the Quaternary. London: Springer.Google Scholar
Hone, D.W.E. and Benton, M.J. (2005) The evolution of large size: how does Cope's Rule work? Trends in Ecology and Evolution 20, 46.Google Scholar
Iwata, H. and Ukai, Y. (2002) Shape: a computer program package for quantitative evaluation of biological shapes based on elliptical Fourier descriptors. Journal of Heredity 93, 321.Google Scholar
Kefford, B.J., Marchant, R., Schäfer, R.B., Metzeling, L., Dunlop, J.E., Choy, S.C. and Goonan, P. (2011) The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates. Environmental Pollution 159, 302310.Google Scholar
Kokot, R.R., Codignotto, J.O. and Elissondo, M. (2004) Vulnerabilidad de la Costa de la Provincia de Río Negro al Ascenso del Nivel del Mar. Revista de la Asociación Geológica Argentina 59, 477487.Google Scholar
Kosnik, M.A., Jablonski, D., Lockwood, R. and Novack-Gottshall, P.M. (2006) Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data-collection efforts. Palaios 21, 588597.Google Scholar
Kuhl, F.P. and Giardina, C.R. (1982) Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18, 236258.Google Scholar
Lanfredi, N.W. and Pousa, J.L. (1988) Mediciones de corrientes, San Antonio Oeste, Provincia de Río Negro. San Antonio Oeste: Informe Inédito, Instituto de Biología Marina y Pesquera Almirante Storni, 13 pp.Google Scholar
Laudien, J., Flint, N.S., van der Bank, F.H. and Brey, T. (2003) Genetic and morphological variation in four populations of the surf clam Donax serra (Röding) from southern African sandy beaches. Biochemical Systematics and Ecology 31, 751772.Google Scholar
Lestrel, P.E. (1997) Fourier descriptors and their applications in biology. New York, NY: Cambridge University Press.Google Scholar
Márquez, F., Robledo, J., Escati Peñaloza, G. and Van der Molen, S. (2010) Use of different geometric morphometrics tools for the discrimination of phenotypic stocks of the striped clam Ameghinomya antiqua (Veneridae) in north Patagonia, Argentina. Fisheries Research 101, 127131.Google Scholar
Martínez, H., Nañes, C., Lizuain, A., Dal Molin, C. and Turel, A. (2001) Hoja geológica de San Antonio Oeste, Provincia de Río Negro. SEGEMAR. Technical report No 4166-II, 32 pp.Google Scholar
Mazio, C. and Vara, D. (1983) Las mareas del Golfo San Matías. Technical report No 13, 83 pp.Google Scholar
McLachlan, A., Jaramillo, E., Defeo, O., Dugan, J., de Ruyck, A. and Coetzee, P. (1995) Adaptations of bivalves to different beach types. Journal of Experimental Marine Biology and Ecology 187, 147160.Google Scholar
Morsan, E.M. (1997) Extracción intermareal de almeja púrpura (Amiantis purpurata) en la costa norte del Golfo San Matías. Informes Técnicos del Plan de Manejo Integrado de la Zona Costera Patagónica (Puerto Madryn, Argentina). Technical report No. 33, 15 pp.Google Scholar
Morsan, E.M. (2000) Dinámica poblacional y explotación de la almeja púrpura, Amiantis purpurata L . PhD thesis. Universidad Nacional del Sur, Bahía Blanca.Google Scholar
Morsan, E.M. (2003) Spatial analysis and abundance estimation of the southernmost population of purple clam, Amiantis purpurata in Patagonia (Argentina). Journal of the Marine Biological Association of the United Kingdom 83, 42414251.Google Scholar
Morsan, E.M. (2007) Spatial pattern, harvesting and management of the artisanal fishery for purple clam (Amiantis purpurata) in Patagonia (Argentina). Ocean and Coastal Management 50, 481497.Google Scholar
Morsan, E.M. and Kroeck, M.A. (2005) Reproductive cycle of purple clam, Amiantis purpurata (Bivalvia: Veneridae) in northern Patagonia (Argentina). Journal of the Marine Biological Association of the United Kingdom 85, 367373.Google Scholar
Morsan, E.M., Pappalardo, P. and Doldan, M.S. (2011) Growth compensation as a regulatory mechanism of purple clam Amiantis purpurata population dynamics in Patagonia. Marine Ecology Progress Series 443, 207216.Google Scholar
Neubauer, T.A., Harzhauser, M. and Mandic, O. (2013) Phenotypic evolution in a venerid bivalve species lineage from the late Middle Miocene Central Paratethys Sea: a multi-approach morphometric analysis. Biological Journal of the Linnean Society 110, 320334.Google Scholar
Palmer, M., Pons, G.X. and Linde, M. (2004) Discriminating between geographical groups of a Mediterranean commercial clam (Chamelea gallina (L.): Veneridae) by shape analysis. Fisheries Research 67, 9398.CrossRefGoogle Scholar
Pastorino, G. (1991) The genus Chama Linné (Bivalvia) in the marine Quaternary of northern Patagonia, Argentina. Journal of Paleontology 65, 756760.Google Scholar
Penchaszadeh, P.E., Arrighetti, F., Cledón, M., Livore, J.P., Botto, F. and Iribarne, O.O. (2006) Bivalve contribution to shallow sandy bottom food web off Mar del Plata (Argentina): inference from stomach content and stable isotope analysis. Journal of Shellfish Research 25, 5154.Google Scholar
Ponce, J.F., Rabassa, J., Coronato, A. and Borromei, A.M. (2011) Paleogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biological Journal of the Linnean Society 103, 363379.Google Scholar
Rabassa, J. (2008) Late Cenozoic glaciations of Patagonia and Tierra del Fuego. In Rabassa, J. (ed.) Late Cenozoic of Patagonia and Tierra del Fuego, Developments in Quaternary Science. Amsterdam: Elsevier, pp. 151204.Google Scholar
Regehr, E.V., Amstrup, S.C. and Stirling, I. (2006) Polar bear population status in the southern Beaufort Sea. Reston, VA: U.S. Geological Survey, 20 pp.CrossRefGoogle Scholar
Rivas, A.L. and Beier, E.J. (1990) Temperature and salinity fields in the North Patagonic Gulfs. Oceanologica Acta 13, 1520.Google Scholar
Rohlf, F.J. and Archie, J.W. (1984) A comparison of Fourier methods for description of wing shape in mosquitos (Diptera: Culicidae). Systematic Zoology 33, 302317.Google Scholar
Rutter, N., Schnack, E.J., del Rio, J., Fasano, J.L., Isla, F.I. and Radtke, U. (1989) Correlation and dating of Quaternary littoral zones along the Patagonian coast, Argentina. Quaternary Science Reviews 8, 213234.Google Scholar
Rutter, N., Radke, U. and Schnack, E.J. (1990) Comparison of ESR and amino acid data in correlating and dating Quaternary shorelines along the Patagonian Coast, Argentina. Journal of Coastal Research 6, 391411.Google Scholar
Scarabino, V. (1977) Moluscos del Golfo San Matías (Provincia de Rio Negro, República Argentina). Inventario y claves para su identificación. Comunicaciones de la Sociedad Malacológica de Uruguay 4, 177285.Google Scholar
Scasso, L.M. and Piola, A.R. (1988) Intercambio neto de agua entre el mar y la atmósfera en el Golfo San Matías. Geoacta 15, 1331.Google Scholar
Schellmann, G. (1998) Coastal development in Southern South America (Patagonia and Chile) since the Younger Middle Pleistocene. Sea-level changes and neotectonics. In Kelletat, D. (ed.) German Geographical Coastal Research: The Last Decade. Tübingen: Institute for Scientific Co-operation, pp. 289304.Google Scholar
Schellmann, G. and Radtke, U. (2003) Coastal terraces and Holocene sea-level changes along the Patagonian Atlantic coast. Journal of Coastal Research 103, 983996.Google Scholar
Schellmann, G. and Radtke, U. (2010) Timing and magnitude of Holocene sea-level changes along the middle and south Patagonian Atlantic coast derived from beach ridge systems, littoral terraces and valley-mouth terraces. Earth-Science Reviews 103, 130.Google Scholar
Schneider, S., Fürsich, F.T., Schulz-Mirbach, T. and Werner, W. (2010) Ecophenotypic plasticity versus evolutionary trends – morphological variability in Upper Jurassic bivalve shells from Portugal. Acta Palaeontologica Polonica 55, 701732.CrossRefGoogle Scholar
Seed, R. (1980) Shell growth and form in the Bivalvia. In Rhoads, D.C. and Lutz, R.A. (eds) Skeletal growth of aquatic organisms. New York, NY: Plenum Press, pp. 2367.Google Scholar
Seed, R. and Richardson, C.A. (1999) Evolutionary traits in Perna viridis (Linnaeus) and Septifer virgatus (Wiegmann) (Bivalvia: Mytilidae). Journal of Experimental Marine Biology and Ecology 239, 273287.Google Scholar
Seilacher, A. (1984) Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology 27, 207237.Google Scholar
Soares, A.G., Callahan, R.K. and De Ruyck, A.M.C. (1998) Microevolution and phenotypic plasticity in Donax serra Röding (Bivalvia: Donacidae) on high energy sandy beaches. Journal of Molluscan Studies 64, 407421.Google Scholar
Sousa, R., Freire, R., Rufino, M., Méndez, J., Gaspar, M., Antunes, C. and Guilhermino, L. (2007) Genetic and shell morphological variability of the invasive bivalve Corbicula fluminea (Müller, 1774) in two Portuguese estuaries. Estuarine, Coastal and Shelf Science 74, 166174.Google Scholar
Stanley, S.M. (1970) Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America, Inc. Memoir 125, 296.Google Scholar
Stanley, S.M. (1975) Adaptative themes in the evolution of the Bivalvia (Mollusca). Annual Review of Earth and Planetary Sciences 3, 361385.Google Scholar
Stanley, S.M. and Yang, X. (1987) Approximate evolutionary stasis for bivalve morphology over millions of years: a multilineage study. Paleobiology 13, 113139.Google Scholar
Trueman, E.R., Brand, A.R. and Davis, P. (1966) The dynamics of burrowing of some common littoral bivalves. Journal of Experimental Biology 44, 469492.Google Scholar
Ubukata, T. (2003) A morphometric study on morphological plasticity of shell form in crevice-dwelling Pterioida (Bivalvia). Biological Journal of the Linnean Society 79, 285297.Google Scholar
Vermeij, G.J. (1978) Biogeography and adaptation: patterns of marine life. Cambridge, MA: Harvard University Press.Google Scholar
Vermeij, G.J. (1980) Gastropod growth rate, allometry, and adult size: environmental implications. In Rhoads, D.C. and Lutz, R.A. (eds) Skeletal growth of aquatic organisms. New York, NY: Plenum Press, pp. 379394.Google Scholar
Wikelski, M. and Thom, C. (2000) Marine iguanas shrink to survive El Niño. Nature 403, 3738.Google Scholar
Zalizniak, L., Kefford, B.J. and Nugegoda, D. (2006) Is all salinity the same? I. The effect of ionic compositions on the salinity tolerance of five species of freshwater invertebrates. Marine and Freshwater Research 57, 7582.Google Scholar
Zar, J.H. (2010) Biostatistical analysis, 5th edn. Englewood Cliffs, NJ: Prentice Hall.Google Scholar