Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-30T16:37:40.954Z Has data issue: false hasContentIssue false

MULTIPLICATIVE FUNCTIONS ON ARITHMETIC PROGRESSIONS. VII: LARGE MODULI

Published online by Cambridge University Press:  24 March 2003

P. D. T. A. ELLIOTT
Affiliation:
Department of Mathematics, University of Colorado, Campus Box 395, Boulder, CO 80309-0395, USApdtae@euclid.colorado.edu
Get access

Abstract

A complex valued function $g$ , defined on the positive integers, is multiplicative if it satisfies $g(ab) = g(a)g(b)$ whenever the integers $a$ and $b$ are mutually prime.

THEOREM 1. Let $D$ be an integer, $2 \le D \le x, \varepsilon > 0$ . Let $g$ be a multiplicative function with values in the complex unit disc.

There is a character $\chi_1({\rm mod}\, D)$ , real if $g$ is real, such that when $0 < \gamma < 1$ , \[ \sum_{\overset{n \le y}{n\equiv a({\rm mod}\, D)}} g(n)- \frac{1}{\phi(D)} \sum_{\overset{n\le y}{(n,D)=1)}} g(n)-\frac{\overline{\chi_1(a)}}{\phi(D)} \sum_{n\le y} g(n)\chi_1(n) \ll \frac{y}{\phi(D)} \left(\frac{\log D}{\log y}\right)^{1/4-\varepsilon} \] uniformly for $(a, D) = 1, D \le y, x^\gamma \le y \le x$ , the implied constant depending at most upon $\varepsilon, \gamma$ .

Type
Notes and Papers
Copyright
The London Mathematical Society, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)