Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T18:09:41.071Z Has data issue: false hasContentIssue false

Shared and Divergent Auditory and Tactile Processing in Children with Autism and Children with Sensory Processing Dysfunction Relative to Typically Developing Peers

Published online by Cambridge University Press:  06 July 2015

Carly Demopoulos*
Affiliation:
University of California-San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, California
Annie N. Brandes-Aitken
Affiliation:
University of California-San Francisco, Department of Neurology, San Francisco, California
Shivani S. Desai
Affiliation:
University of California-San Francisco, Department of Neurology, San Francisco, California
Susanna S. Hill
Affiliation:
University of California-San Francisco, Department of Neurology, San Francisco, California
Ashley D. Antovich
Affiliation:
University of California-San Francisco, Department of Neurology, San Francisco, California
Julia Harris
Affiliation:
University of California-San Francisco, Department of Neurology, San Francisco, California
Elysa J. Marco
Affiliation:
University of California-San Francisco, Department of Neurology, San Francisco, California University of California-San Francisco, Department of Pediatrics, San Francisco, California University of California-San Francisco, Department of Psychiatry, San Francisco, California
*
Correspondence and reprint requests to: Carly Demopoulos, Biomagnetic Imaging Laboratory, Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143-0628. E-mail: carly.demopoulos@ucsf.edu

Abstract

The aim of this study was to compare sensory processing in typically developing children (TDC), children with Autism Spectrum Disorder (ASD), and those with sensory processing dysfunction (SPD) in the absence of an ASD. Performance-based measures of auditory and tactile processing were compared between male children ages 8–12 years assigned to an ASD (N=20), SPD (N=15), or TDC group (N=19). Both the SPD and ASD groups were impaired relative to the TDC group on a performance-based measure of tactile processing (right-handed graphesthesia). In contrast, only the ASD group showed significant impairment on an auditory processing index assessing dichotic listening, temporal patterning, and auditory discrimination. Furthermore, this impaired auditory processing was associated with parent-rated communication skills for both the ASD group and the combined study sample. No significant group differences were detected on measures of left-handed graphesthesia, tactile sensitivity, or form discrimination; however, more participants in the SPD group demonstrated a higher tactile detection threshold (60%) compared to the TDC (26.7%) and ASD groups (35%). This study provides support for use of performance-based measures in the assessment of children with ASD and SPD and highlights the need to better understand how sensory processing affects the higher order cognitive abilities associated with ASD, such as verbal and non-verbal communication, regardless of diagnostic classification. (JINS, 2015, 21, 444–454)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, A., Hare, A.O., & Graham, C. (2006). Impairments in sensory modulation in children with autistic spectrum disorder. British Journal of Occupational Therapy, 69(8), 357364.Google Scholar
Alcántara, J.I., Weisblatt, E.J.L., Moore, B.C.J., & Bolton, P.F. (2004). Speech-in-noise perception in high-functioning individuals with autism or Asperger’s syndrome. Journal of Child Psychology and Psychiatry, 45(6), 11071114. doi:10.1111/j.1469-7610.2004.t01-1-00303.x.Google Scholar
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders, 5th edition (DSM-5). Diagnostic and statistical manual of mental disorders 4th edition TR.Google Scholar
Arnold, G., & Schwartz, S. (1983). Hemispheric lateralization of language in autistic and aphasic children. Journal of Autism and Developmental Disorders, 13(2), 129139. doi:10.1007/BF01531814.Google Scholar
Auld, M., Boyd, R., Moseley, G., & Johnston, L. (2011). Tactile assessment in children with cerebral palsy: A clinimetric review. Physical and Occupational Therapy in Pediatrics, 31(4), 413439.Google Scholar
Ayres, J. (1989). Sensory Integration and Praxis Tests (SIPT). Los Angeles: Western Psychological Services.Google Scholar
Ben-Sasson, A., Hen, L., Fluss, R., Cermak, S.A., Engel-Yeger, B., & Gal, E. (2009). A meta-analysis of sensory modulation symptoms in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 39(1), 111. doi:10.1007/s10803-008-0593-3.Google Scholar
Ben-Sasson, A., Soto, T.W., Martinez-Pedraza, F., & Carter, A.S. (2013). Early sensory over-responsivity in toddlers with autism spectrum disorders as a predictor of family impairment and parenting stress. Journal of Child Psychology and Psychiatry, 54(8), 846853. doi:10.1016/j.biotechadv.2011.08.021.Secreted.Google Scholar
Blakemore, S.-J., Tavassoli, T., Calò, S., Thomas, R.M., Catmur, C., Frith, U.,& Haggard, P. (2006). Tactile sensitivity in Asperger syndrome. Brain and Cognition, 61(1), 513. doi:10.1016/j.bandc.2005.12.013.Google Scholar
Bonnel, A., Mottron, L., Peretz, I., Trudel, M., Gallun, E., & Bonnel, A.-M. (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis. Journal of Cognitive Neuroscience, 15(2), 226235. doi:10.1162/089892903321208169.Google Scholar
Brock, M.E., Freuler, A., Baranek, G.T., Watson, L.R., & Poe, M.D. (2012). Temperament and sensory features of children with autism. Journal of Autism and Developmental Disorders, 42(11), 22712284. doi:10.1007/s10803-012-1472-5.CrossRefGoogle ScholarPubMed
Cardy, J.E.O., Flagg, C.A.E.J., Roberts, W., Brian, J., & Roberts, T.P.L. (2005). Magnetoencephalography identifes rapid temporal processing deficit in autism and language impairment. Neuroreport, 16(4), 329332.Google Scholar
Carter, A.S., Ben-Sasson, A., & Briggs-Gowan, M.J. (2011). Sensory over-responsivity, psychopathology, and family impairment in school-aged children. Journal of the American Academy of Child and Adolescent Psychiatry, 50(12), 12101219. doi:10.1016/j.jaac.2011.09.010.CrossRefGoogle ScholarPubMed
Cascio, C., McGlone, F., Folger, S., Tannan, V., Baranek, G., Pelphrey, K.A.,& Essick, G. (2008). Tactile perception in adults with autism: A multidimensional psychophysical study. Journal of Autism and Developmental Disorders, 38(1), 127137. doi:10.1007/s10803-007-0370-8.Google Scholar
Casey, B.J., Oliveri, M.E., & Insel, T. (2014). A neurodevelopmental perspective on the research domain criteria (RDoC) framework. Biological Psychiatry, 76(5), 350353. doi:10.1016/j.biopsych.2014.01.006.Google Scholar
Chang, Y.-S., Owen, J.P., Desai, S.S., Hill, S.S., Arnett, A.B., Harris, J., &Mukherjee, P. (2014). Autism and sensory processing disorders: Shared white matter disruption in sensory pathways but divergent connectivity in social-emotional pathways. PloS One, 9(7), e103038. doi:10.1371/journal.pone.0103038.CrossRefGoogle ScholarPubMed
DePape, A.-M.R., Hall, G.B.C., Tillmann, B., & Trainor, L.J. (2012). Auditory processing in high-functioning adolescents with autism spectrum disorder. PLoS One, 7, e44084. doi:10.1371/journal.pone.0044084.Google Scholar
Dunn, W. (1999). Sensory profile user’s manual. San Antonio, TX: Psychological Corporation.Google Scholar
Edgar, J.C., Khan, S.Y., Blaskey, L., Chow, V.Y., Rey, M., Gaetz, W., &Roberts, T.P.L. (2015). Neuromagnetic oscillations predict evoked-response latency delays and core language deficits in autism spectrum disorders. Journal of Autism and Developmental Disorders, 45, 395405. doi:10.1007/s10803-013-1904-x.Google Scholar
Fernandez-Andres, M.I., Pastor-Cerezuela, G., Sanz-Cervera, P., & Tarraga-Mingues, R. (2015). A comparative study of sensory processing in children with and without autism spectrum disorder in the home and classroom environments. Research in Developmental Disabilities, 38, 202212. doi:10.1016/j.ridd.2014.12.034.Google Scholar
Flagg, E.J., Cardy, J.E.O., Roberts, W., & Roberts, T.P.L. (2005). Language lateralization development in children with autism: Insights from the late field magnetoencephalogram. Neuroscience Letters, 386, 8287. doi:10.1016/j.neulet.2005.05.037.CrossRefGoogle ScholarPubMed
Gadow, K., & Sprafkin, J. (1997). Child symptom inventory–4. Los Angeles: Western Psychological Services.Google Scholar
Gage, N.M., Siegel, B., Callen, M., & Roberts, T. (2003). Cortical sound processing in children with autism disorder: An MEG investigation. Neuroreport, 14(16), 20472051. doi:10.1097/01.wnr.0000090030.46087.CrossRefGoogle ScholarPubMed
Gage, N.M., Siegel, B., & Roberts, T.P.L. (2003). Cortical auditory system maturational abnormalities in children with autism disorder: An MEG investigation. Brain Research. Developmental Brain Research, 144(2), 201209.CrossRefGoogle ScholarPubMed
Gandal, M.J., Edgar, J.C., Ehrlichman, R.S., Mehta, M., Roberts, T.P.L., & Siegel, S.J. (2010). Validating γ oscillations and delayed auditory responses as translational biomarkers of autism. Biological Psychiatry, 68(12), 11001106. doi:10.1016/j.biopsych.2010.09.031.Google Scholar
Gourley, L., Wind, C., Henninger, E.M., & Chinitz, S. (2013). Sensory processing difficulties, behavioral problems, and parental stress in a clinical population of young children. Journal of Child and Family Studies, 22(7), 912921. doi:10.1016/j.biotechadv.2011.08.021.Secreted.Google Scholar
Greenspan, S.I., & Wieder, S. (1997). Developmental patterns and outcomes in infants and children with disorders in relating and communicating: A chart review of 200 cases of children with autistic spectrum diagnoses. The Journal of Developmental and Learning Disorders, 1(1), 138.Google Scholar
Güçlü, B., Tanidir, C., Mukaddes, N.M., & Unal, F. (2007). Tactile sensitivity of normal and autistic children. Somatosensory & Motor Research, 24(1–2), 2133. doi:10.1080/08990220601179418.Google Scholar
Heaton, P. (2003). Pitch memory, labelling and disembedding in autism. Journal of Child Psychology and Psychiatry, 44(4), 543551. doi:10.1111/1469-7610.00143.Google Scholar
Heaton, P. (2005). Interval and contour processing in autism. Journal of Autism and Developmental Disorders, 35(6), 787793. doi:10.1007/s10803-005-0024-7.Google Scholar
Hitoglou, M., Ververi, A., Antoniadis, A., & Zafeiriou, D.I. (2010). Childhood autism and auditory system abnormalities. Pediatric Neurology, 42(5), 309314. doi:10.1016/j.pediatrneurol.2009.10.009.Google Scholar
Järvinen-Pasley, A., & Heaton, P. (2007). Evidence for reduced domain-specificity in auditory processing in autism. Developmental Science, 10(6), 786793. doi:10.1111/j.1467-7687.2007.00637.x.Google Scholar
Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217250.Google Scholar
Kargas, N., López, B., Reddy, V., & Morris, P. (2015). The relationship between auditory processing and restricted, repetitive behaviors in adults with autism spectrum disorders. Journal of Autism and Developmental Disorders, 45, 658668. doi:10.1007/s10803-014-2219-2.Google Scholar
Khalfa, S., Bruneau, N., Rogé, B., Georgieff, N., Veuillet, E., Adrien, J.-L., &Collet, L. (2004). Increased perception of loudness in autism. Hearing Research, 198(1-2), 8792. doi:10.1016/j.heares.2004.07.006.Google Scholar
Knaus, T.A., Silver, A.M., Kennedy, M., Lindgren, K.A., Dominick, K.C., Siegel, J.,& Tager-Flusberg, H. (2010). Language laterality in autism spectrum disorder and typical controls: A functional, volumetric, and diffusion tensor MRI study. Brain and Language, 112(2), 113120. doi:10.1016/j.bandl.2009.11.005.Google Scholar
Lerner, M.D., McPartland, J.C., & Morris, J.P. (2013). Multimodal emotion processing in autism spectrum disorders: An event-related potential study. Developmental Cognitive Neuroscience, 3, 1121. doi:10.1016/j.dcn.2012.08.005.CrossRefGoogle ScholarPubMed
Lord, C., Risi, S., Lambrecht, L., Cook, E.H., Leventhal, B.L., DiLavore, P.C., & Rutter, M. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205223.CrossRefGoogle ScholarPubMed
Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L.,& Schopler, E. (1989). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19(2), 185212.Google Scholar
Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659685.CrossRefGoogle ScholarPubMed
Marco, E.J., Hinkley, L.B.N., Hill, S.S., & Nagarajan, S.S. (2011). Sensory processing in autism: A review of neurophysiologic findings. Pediatric Research, 69(5 Pt 2), 48R54R. doi:10.1203/PDR.0b013e3182130c54.Google Scholar
Marco, E.J., Khatibi, K., Hill, S.S., Siegel, B., Arroyo, M.S., Dowling, A.F.,& Nagarajan, S.S. (2012). Children with autism show reduced somatosensory response: An MEG study. Autism Research, 5, 340351. doi:10.1002/aur.1247.Google Scholar
Mayes, S.D., & Calhoun, S.L. (1999). Symptoms of autism in young children and correspondence with the DSM. Infants and Young Children, 12(2), 9097.Google Scholar
McCann, B.S. (1981). Hemispheric asymmetries and early infantile autism. Journal of Autism and Developmental Disorders, 11(4), 401411.Google Scholar
Nielsen, J.A., Zielinski, B.A., Fletcher, P.T., Alexander, A.L., Lange, N., Bigler, E.D., &Anderson, J.S. (2014). Abnormal lateralization of functional connectivity between language and default mode regions in autism. Molecular Autism, 5(1), 8. doi:10.1186/2040-2392-5-8.Google Scholar
O’Riordan, M., & Passetti, F. (2006). Discrimination in autism within different sensory modalities. Journal of Autism and Developmental Disorders, 36(5), 665675. doi:10.1007/s10803-006-0106-1.Google Scholar
Oram Cardy, J.E., Flagg, E.J., Roberts, W., & Roberts, T.P.L. (2005). Delayed mismatch field for speech and non-speech sounds in children with autism. Neuroreport, 16(5), 521525.Google Scholar
Oram Cardy, J.E., Flagg, E.J., Roberts, W., & Roberts, T.P.L. (2008). Auditory evoked fields predict language ability and impairment in children. International Journal of Psychophysiology, 68(2), 170175. doi:10.1016/j.ijpsycho.2007.10.015.Google Scholar
Owen, J.P., Marco, E.J., Desai, S., Fourie, E., Harris, J., Hill, S.S., & Mukherjee, P. (2013). Abnormal white matter microstructure in children with sensory processing disorders. Neuroimage. Clinical, 2, 844853. doi:10.1016/j.nicl.2013.06.009.Google Scholar
Puts, N.A., Wodka, E.L., Tommerdahl, M., Mostofsky, S.H., & Edden, R.A. (2014). Impaired tactile processing in children with autism spectrum disorder. Journal of Neurophysiology, 111(9), 18031811. doi:10.1152/jn.00890.2013.CrossRefGoogle ScholarPubMed
Richard, G.J., & Ferre, J.M. (2006). Differential screening test for processing. East Moline, IL: Linguisystems, Inc.Google Scholar
Roberts, T.P.L., Cannon, K.M., Tavabi, K., Blaskey, L., Khan, S.Y., Monroe, J.F., &Edgar, J.C. (2011). Auditory magnetic mismatch field latency: A biomarker for language impairment in autism. Biological Psychiatry, 70(3), 263269. doi:10.1016/j.biopsych.2011.01.015.CrossRefGoogle ScholarPubMed
Roberts, T.P.L., Khan, S.Y., Rey, M., Monroe, J.F., Cannon, K., Woldoff, S., &Edgar, J.C. (2010). MEG detection of delayed auditory evoked responses in autism spectrum disorders: Towards an imaging biomarker for autism. Autism Research, 3(1), 818. doi:10.1002/aur.111.MEG.CrossRefGoogle ScholarPubMed
Rogers, S.J., Hepburn, S., & Wehner, E. (2003). Parent reports of sensory symptoms in toddlers with autism and those with other developmental disorders. Journal of Autism and Developmental Disorders, 33(6), 631642.Google Scholar
Rogers, S.J., & Ozonoff, S. (2005). Annotation: What do we know about sensory dysfunction in autism? A critical review of the empirical evidence. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 46(12), 12551268. doi:10.1111/j.1469-7610.2005.01431.x.Google Scholar
Rojas, D.C., Teale, P.D., Maharajh, K., Kronberg, E., Youngpeter, K., Wilson, L.B., &Hepburn, S. (2011). Transient and steady-state auditory gamma-band responses in first-degree relatives of people with autism spectrum disorder. Molecular Autism, 2(1), 11. doi:10.1186/2040-2392-2-11.Google Scholar
Rutter, M., Bailey, A., & Lord, C. (2003). SCQ: Social communication questionnaire. Los Angeles: Western Psychological Services.Google Scholar
Sattler, J., & Dumont, R. (2004). Assessment of children: WISC-IV and WPPSI-III Supplement. San Diego, CA: Jerome M. Sattler, Publisher, Inc.Google Scholar
Schmidt, G.L., Rey, M.M., Oram Cardy, J.E., & Roberts, T.P.L. (2009). Absence of M100 source asymmetry in autism associated with language functioning. Neuroreport, 20(11), 10371041. doi:10.1097/WNR.0b013e32832e0ca7.CrossRefGoogle ScholarPubMed
Tavassoli, T., Miller, L.J., Schoen, S.A., Nielsen, D.M., & Baron-Cohen, S. (2014). Sensory over-responsivity in adults with autism spectrum conditions. Autism, 18, 428432. doi:10.1177/1362361313477246.CrossRefGoogle ScholarPubMed
Tecchio, F., Benassi, F., Zappasodi, F., Gialloreti, L.E., Palermo, M., Seri, S.,& Rossini, P.M. (2003). Auditory sensory processing in autism: A magnetoencephalographic study. Biological Psychiatry, 54(6), 647654. doi:10.1016/S0006-3223(03)00295-6.Google Scholar
Tomchek, S.D., Huebner, R.A., & Dunn, W. (2014). Patterns of sensory processing in children with an autism spectrum disorder. Research in Autism Spectrum Disorders, 8(9), 12141224. doi:10.1016/j.rasd.2014.06.006.Google Scholar
Tomchek, S., & Dunn, W. (2007). Sensory processing in children with and without autism: A comparative study using the Short Sensory Profile. The American Journal of Occupational Therapy, 61(2), 190200.Google Scholar
Touch Test Sensory Evaluators (n.d.). North Coast Medical and Rehabilitation Products. Retrieved from https://www.ncmedical.com/item_1278.html#!prettyPhoto Google Scholar
Touch Test Two Point Discriminator (n.d.). North Coast Medical and Rehabilitation Products. Retrieved from https://www.ncmedical.com/item_705.html Google Scholar
Tumkaya, S., Karadag, F., & Oguzhanoglu, N.K. (2012). Neurological soft signs in schizophrenia and obsessive compulsive disorder spectrum. European Psychiatry, 27(3), 192199. doi:10.1016/j.eurpsy.2010.03.005.Google Scholar
Uljarević, M., Prior, M.R., & Leekam, S.R. (2014). First evidence of sensory atypicality in mothers of children with Autism Spectrum Disorder (ASD). Molecular Autism, 5(1), 26. doi:10.1186/2040-2392-5-26.Google Scholar
Von Boven Domes (n.d.). US Neurologicals, LLC. Retrieved from http://www.usneurologicals.com/index.php?app=ecom&ns=prodshow&ref=ST_VanBoven.Google Scholar
Wechsler, D. (2003). Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). San Antonio, TX: Pearson Assessments.Google Scholar
Wilson, T.W., Rojas, D.C., Reite, M.L., Teale, P.D., & Rogers, S.J. (2007). Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biological Psychiatry, 62(3), 192197. doi:10.1016/j.biopsych.2006.07.002.Google Scholar
Witwer, A.N., & LeCavalier, L. (2007). Autism screening tools: An evaluation of the Social Communication Questionnaire and the Developmental Behaviour Checklist–Autism Screening Algorithm. Journal of Intellectual & Developmental Disability, 32(3), 179187.Google Scholar