Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T09:14:00.811Z Has data issue: false hasContentIssue false

Neuropsychological Profile of Intellectually Gifted Children: A Systematic Review

Published online by Cambridge University Press:  17 May 2021

Aurélie Bucaille*
Affiliation:
Learning Disabilities Reference Center, Brest University Hospital, Brest, France Pays de la Loire Psychology Laboratory (LPPL EA4638), University of Angers, Angers, France
Christophe Jarry
Affiliation:
Pays de la Loire Psychology Laboratory (LPPL EA4638), University of Angers, Angers, France
Justine Allard
Affiliation:
Coordination Platform for Neurodevelopmental Disorders, Saint-Nazaire, France
Sylvain Brochard
Affiliation:
Pediatric Rehabilitation Department, ILDYS Foundation, Brest, France Pediatric Rehabilitation Department, Brest University Hospital, Brest, France Medical Information Processing Laboratory (LaTIM), INSERM, Brest, France
Sylviane Peudenier
Affiliation:
Learning Disabilities Reference Center, Brest University Hospital, Brest, France
Arnaud Roy
Affiliation:
Pays de la Loire Psychology Laboratory (LPPL EA4638), University of Angers, Angers, France Learning Disabilities Reference Center, Nantes University Hospital, Nantes, France
*
*Correspondence and reprint requests to: Aurélie Bucaille, Centre de Référence des Troubles des Apprentissages, Hôpital Morvan, 2 avenue Foch 29609 Brest Cedex 2, France. E-mail: aurelie.bucaille@chu-brest.fr

Abstract

Objective:

The term intellectually gifted (IG) refers to children of high intelligence, which is classically measured by the intelligence quotient (IQ). Some researchers assume that the cognitive profiles of these children are characterized by both strengths and weaknesses, compared with those of their typically developing (TD) peers of average IQ. The aim of the present systematic review was to verify this assumption, by compiling data from empirical studies of cognitive functions (language, motor skills, visuospatial processing, memory, attention and executive functions, social and emotional cognition) and academic performances.

Method:

The literature search yielded 658 articles, 15 of which met the selection criteria taken from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses model. We undertook a qualitative summary, to highlight any discrepancies between cognitive functions.

Results:

IG children exhibited better skills than TD children in a number of domains, including attention, language, mathematics, verbal working memory, shifting, and social problem solving. However, the two groups had comparable skills in visuospatial processing, memory, planning, inhibition, and visual working memory, or facial recognition.

Conclusion:

Although IG children may have some strengths, many studies have failed to find differences between this population and their TD peers on many other cognitive measures. Just like any other children, they can display learning disabilities, which can be responsible for academic underachievement. Further studies are needed to better understand this heterogeneity. The present review provides pointers for overcoming methodological problems and opens up new avenues for giftedness research.

Type
Critical Review
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ardila, A. (2018). Is intelligence equivalent to executive functions? Psicothema, 30(2), 159164. https://doi.org/10.7334/psicothema2017.329 Google ScholarPubMed
Ardila, A., Pineda, D., & Rosselli, M. (2000). Correlation between intelligence test scores and executive function measures. Archives of Clinical Neuropsychology, 15(1), 3136. https://doi.org/10.1093/arclin/15.1.31 CrossRefGoogle ScholarPubMed
Arffa, S. (2007). The relationship of intelligence to executive function and non-executive function measures in a sample of average, above average, and gifted youth. Archives of Clinical Neuropsychology, 22(8), 969978. https://doi.org/10.1016/j.acn.2007.08.001 CrossRefGoogle Scholar
Arffa, S., Lovell, M., Podell, K., & Goldberg, E. (1998). Wisconsin card sorting test performance in above average and superior school children: Relationship to intelligence and age. Archives of Clinical Neuropsychology, 13(8), 713720. https://doi.org/10.1016/S0887-6177(98)00007-9 Google ScholarPubMed
Binder, L. M., Iverson, G. L., & Brooks, B. L. (2009). To err is human: “Abnormal” neuropsychological scores and variability are common in healthy adults. Archives of Clinical Neuropsychology, 24(1), 3146.CrossRefGoogle Scholar
Blum, D., & Holling, H. (2017). Spearman’s law of diminishing returns. A meta-analysis. Intelligence, 65, 6066. https://doi.org/10.1016/j.intell.2017.07.004 CrossRefGoogle Scholar
Brody, L. E., & Mills, C. J. (1997). Gifted children with learning disabilities: A review of the issues. Journal of Learning Disabilities, 30(3), 282296. https://doi.org/10.1177/002221949703000304 CrossRefGoogle ScholarPubMed
Cao, T. H., Jung, J. Y., & Lee, J. (2017). Assessment in gifted education: A review of the literature from 2005 to 2016. Journal of Advanced Academics, 28(3), 163203. https://doi.org/10.1177/1932202X17714572 CrossRefGoogle Scholar
Caroff, X. (2004). L’identification des enfants à haut potentiel: Quelles perspectives pour l’approche psychométrique? Psychologie Francaise, 49(3), 233251. https://doi.org/10.1016/j.psfr.2004.06.001 CrossRefGoogle Scholar
Cassidy, A. R., Ilardi, D., Bowen, S. R., Hampton, L. E., Heinrich, K. P., Loman, M. M., Sanz, J. H. & Wolfe, K. R. (2018). Congenital heart disease: A primer for the pediatric neuropsychologist. Child Neuropsychology, 24(7), 859902.CrossRefGoogle ScholarPubMed
Chae, P. K., Kim, J.-H., & Noh, K.-S. (2003). Diagnosis of ADHD among gifted children in relation to KEDI-WISC and T.O.V.A. performance. Gifted Child Quarterly, 47(3), 192201. https://doi.org/10.1177/001698620304700303 CrossRefGoogle Scholar
Chung, D., Yun, K., Kim, J. H., Jang, B., & Jeong, J. (2011). Different gain/loss sensitivity and social adaptation ability in gifted adolescents during a public goods game. PLOS ONE, 6(2), e17044. https://doi.org/10.1371/journal.pone.0017044 CrossRefGoogle ScholarPubMed
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168. https://doi.org/10.1146/annurev-psych-113011-143750 CrossRefGoogle ScholarPubMed
Ferguson, C. J. (2009). An effect size primer: A guide for Clinicians and researchers. Professional Psychology: Research and Practice, 40(5), 532538.CrossRefGoogle Scholar
Foley Nicpon, M., Allmon, A., Sieck, B., & Stinson, R. D. (2011). Empirical investigation of twice-exceptionality: Where have we been and where are we going? Gifted Child Quarterly, 55(1), 317. https://doi.org/10.1177/0016986210382575 CrossRefGoogle Scholar
Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186204. https://doi.org/10.1016/j.cortex.2016.04.023 CrossRefGoogle ScholarPubMed
Geake, J. G. (2009). Neuropsychological characteristics of academic and creative giftedness. In Shavinina, L. V. (Ed.), International Handbook on Giftedness (pp. 261273). Springer.CrossRefGoogle Scholar
Grealish, K. G., Price, A. M., & Stein, D. S. (2020). Systematic review of recent pediatric Down syndrome neuropsychology literature: Considerations for regression assessment and monitoring. Journal of Developmental & Behavioral Pediatrics, 41(6), 486495.CrossRefGoogle ScholarPubMed
Grégoire, J. (2012). Les défis de l’identification des enfants à haut potentiel. Approche Neuropsychologique des Apprentissages chez l’Enfant, 119, 419424.Google Scholar
Harnishfeger, K. K., & Bjorklund, D. F. (1990). Strategic and nonstrategic factors in gifted children’s free recall. Contemporary Educational Psychology, 15(4), 346363. https://doi.org/10.1016/0361-476X(90)90030-5 CrossRefGoogle Scholar
Jin, S. H., Kwon, Y. J., Jeong, J. S., Kwon, S. W., & Shin, D. H. (2006). Increased information transmission during scientific hypothesis generation: Mutual information analysis of multichannel EEG. International Journal of Psychophysiology, 62(2), 337344. https://doi.org/10.1016/j.ijpsycho.2006.06.003 CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135. https://doi.org/10.1017/S0140525X07001185 CrossRefGoogle ScholarPubMed
Katusic, M. Z., Voigt, R. G., Colligan, R. C., Weaver, A. L., Homan, K. J., & Barbaresi, W. J. (2011). Attention-deficit hyperactivity disorder in children with high intelligence quotient: Results from a population-based study. Journal of Developmental & Behavioral Pediatrics, 32(2), 103109. https://doi.org/10.1097/DBP.0b013e318206d700 CrossRefGoogle ScholarPubMed
Knepper, W., Obrzut, J. E., & Copeland, E. P. (1983). Emotional and social problem-solving thinking in gifted and average elementary school children. The Journal of Genetic Psychology, 142(1), 2530. https://doi.org/10.1080/00221325.1983.10533492 CrossRefGoogle Scholar
Kraft, R. H. (1993). Deficits in auditory sequential processing found for both gifted and average IQ reading-impaired boys. Annals of the New York Academy of Sciences, 682(1), 366368. https://doi.org/10.1111/j.1749-6632.1993.tb22996.x CrossRefGoogle ScholarPubMed
Labouret, G., & Grégoire, J. (2018). La dispersion intra-individuelle et le profil des scores dans les QI élevés. Approche Neuropsychologique des Apprentissages chez l’Enfant, 154, 271279.Google Scholar
Larabee, G. J. (2000). FORUM association between IQ and neuropsychological test performance: Commentary on Tremont, Hoffman, Scott, and Adams (1998). The Clinical Neuropsychologist, 14(1), 139145.CrossRefGoogle Scholar
Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J. H., Lee, S., & Kim, K. (2006). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage, 29(2), 578586. https://doi.org/10.1016/j.neuroimage.2005.07.036 CrossRefGoogle ScholarPubMed
Lehtonen, A., Howie, E., Trump, D., & Huson, S. M. (2013). Behaviour in children with neurofibromatosis type 1: Cognition, executive function, attention, emotion, and social competence. Developmental Medicine & Child Neurology, 55(2), 111125.CrossRefGoogle ScholarPubMed
Leikin, M., Paz-Baruch, N., & Leikin, R. (2013). Memory abilities in generally gifted and excelling-in-mathematics adolescents. Intelligence, 41(5), 566578. https://doi.org/10.1016/j.intell.2013.07.018 CrossRefGoogle Scholar
Lezak, M. D., Howieson, D. B., Loring, D. W., & Fischer, J. S. (2004). Neuropsychological Assessment. Oxford University Press.Google Scholar
Lovett, B. J., & Sparks, R. L. (2013). The identification and performance of gifted students with learning disability diagnoses: A quantitative synthesis. Journal of Learning Disabilities, 46(4), 304316. https://doi.org/10.1177/0022219411421810 CrossRefGoogle ScholarPubMed
Luders, E., Narr, K. L., Bilder, R. M., Thompson, P. M., Szeszko, P. R., Hamilton, L., & Toga, A. W. (2007). Positive correlations between corpus callosum thickness and intelligence. NeuroImage, 37(4), 14571464. https://doi.org/10.1016/j.neuroimage.2007.06.028 CrossRefGoogle ScholarPubMed
Lyman, R. D., Sanders, E., Abbott, R. D., & Berninger, V. W. (2017). Translating interdisciplinary research on language learning into identifying specific learning disabilities in verbally gifted and average children and youth. Journal of Behavioral and Brain Science, 07(06), 227246. https://doi.org/10.4236/jbbs.2017.76017 CrossRefGoogle Scholar
Maddocks, D. L. S. (2020). Cognitive and achievement characteristics of students from a national sample identified as potentially twice exceptional (gifted with a learning disability). Gifted Child Quarterly, 64(1), 318. https://doi.org/10.1177/0016986219886668 CrossRefGoogle Scholar
Makin, T. R., & Orban de Xivry, J. J. (2019). Science forum: Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. eLife, 8, e48175.CrossRefGoogle ScholarPubMed
Mandelman, S. D., Tan, M., Aljughaiman, A. M., & Grigorenko, E. L. (2010). Intellectual giftedness: Economic, political, cultural, and psychological considerations. Learning and Individual Differences, 20(4), 287297. https://doi.org/10.1016/j.lindif.2010.04.014 CrossRefGoogle Scholar
McCoach, D. B., Kehle, T. J., Bray, M. A., & Siegle, D. (2001). Best practices in the identification of gifted students with learning disabilities. Psychology in the Schools, 38(5), 403411. https://doi.org/10.1002/pits.1029 CrossRefGoogle Scholar
McGee, C. L., Delis, D. C., & Holdnack, J. A. (2009). Cognitive discrepancies in children at the ends of the bell curve: A note of caution for clinical interpretation. The Clinical Neuropsychologist, 23(7), 11601172. https://doi.org/10.1080/13854040902794995 CrossRefGoogle ScholarPubMed
Minahim, D., & Rohde, L. A. (2015). Attention deficit hyperactivity disorder and intellectual giftedness: A study of symptom frequency and minor physical anomalies. Revista Brasileira de Psiquiatria, 37(4), 289295. https://doi.org/10.1590/1516-4446-2014-1489 CrossRefGoogle ScholarPubMed
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 814. https://doi.org/10.1177/0963721411429458 CrossRefGoogle ScholarPubMed
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLOS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097 CrossRefGoogle ScholarPubMed
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A. & PRISMA-P Group (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1. https://doi.org/10.1186/2046-4053-4-1 CrossRefGoogle ScholarPubMed
Montoya-Arenas, D. A., Aguirre-Acevedo, D. C., Díaz Soto, C. M., & Pineda Salazar, D. A. (2018). Executive functions and high intellectual capacity in school-age: Completely overlap? International Journal of Psychological Research, 11(1), 1932. https://doi.org/10.21500/20112084.3239 CrossRefGoogle ScholarPubMed
O’Boyle, M. W., Cunnington, R., Silk, T. J., Vaughan, D., Jackson, G., Syngeniotis, A., & Egan, G. F. (2005). Mathematically gifted male adolescents activate a unique brain network during mental rotation. Cognitive Brain Research, 25(2), 583587. https://doi.org/10.1016/j.cogbrainres.2005.08.004 CrossRefGoogle ScholarPubMed
Reis, S. M., Baum, S. M., & Burke, E. (2014). An operational definition of twice-exceptional learners: Implications and applications. Gifted Child Quarterly, 58(3), 217230. https://doi.org/10.1177/0016986214534976 CrossRefGoogle Scholar
Rommelse, N., Antshel, K., Smeets, S., Greven, C., Hoogeveen, L., Faraone, S. V., & Hartman, C. A. (2017). High intelligence and the risk of ADHD and other psychopathology. The British Journal of Psychiatry, 211(6), 359364. https://doi.org/10.1192/bjp.bp.116.184382 CrossRefGoogle ScholarPubMed
Rommelse, N., van der Kruijs, M., Damhuis, J., Hoek, I., Smeets, S., Antshel, K. M., Hoogeveen, L., & Faraone, S. V. (2016). An evidenced-based perspective on the validity of attention-deficit/hyperactivity disorder in the context of high intelligence. Neuroscience & Biobehavioral Reviews, 71, 2147. https://doi.org/10.1016/j.neubiorev.2016.08.032 CrossRefGoogle ScholarPubMed
Schofield, N. J., & Ashman, A. F. (1987). The cognitive processing of gifted, high average and low average ability students. British Journal of Educational Psychology, 57(1), 920. https://doi.org/10.1111/j.2044-8279.1987.tb03056.x CrossRefGoogle ScholarPubMed
Segalowitz, S. J., Unsal, A., & Dywan, J. (1992). Cleverness and wisdom in 12-year-olds: Electrophysiological evidence for late maturation of the frontal lobe. Developmental Neuropsychology, 8(2–3), 279298. https://doi.org/10.1080/87565649209540528 CrossRefGoogle Scholar
Shi, J., Tao, T., Chen, W., Cheng, L., Wang, L., & Zhang, X. (2013). Sustained attention in intellectually gifted children assessed using a continuous performance test. PLOS ONE, 8(2), e57417. https://doi.org/10.1371/journal.pone.0057417 CrossRefGoogle ScholarPubMed
Silverman, L. K. (1997). The construct of asynchronous development. Peabody Journal of Education, 72(3–4), 3658.CrossRefGoogle Scholar
Solé-Casals, J., Serra-Grabulosa, J. M., Romero-Garcia, R., Vilaseca, G., Adan, A., Vilaró, N., Bargalló, N., & Bullmore, E. T. (2019). Structural brain network of gifted children has a more integrated and versatile topology. Brain Structure and Function, 224(7), 23732383. https://doi.org/10.1007/s00429-019-01914-9 CrossRefGoogle Scholar
Spearman, C. (1904). “General intelligence” objectively determined and measured. American Journal of Psychology, 15(2), 201292.CrossRefGoogle Scholar
Sullivan, G. M., & Feinn, R. (2012). Using effect-size – or why the P value is not enough. Journal of Graduate Medical Education, 4(3), 279282 CrossRefGoogle ScholarPubMed
Sternberg, R. J. (1981). A componential theory of intellectual giftedness. Gifted Child Quarterly, 25(2), 8693. https://doi.org/10.1177/001698628102500208 CrossRefGoogle Scholar
Terrassier, J.-C. (2009). Les enfants intellectuellement précoces. Archives de Pédiatrie, 16(12), 16031606. https://doi.org/10.1016/j.arcped.2009.07.019 CrossRefGoogle Scholar
Terriot, K. (2018). De la définition théorique du haut potentiel intellectuel (HPI) aux conséquences pratiques. Approche Neuropsychologique des Apprentissages chez l’Enfant, 30(154), 265270.Google Scholar
Toplak, M. E., West, R. F., & Stanovich, K. E. (2013). Practitioner review: Do performance-based measures and ratings of executive function assess the same construct? Journal of Child Psychology and Psychiatry, 54(2), 131143. https://doi.org/10.1111/jcpp.12001 CrossRefGoogle ScholarPubMed
Tremont, G., Hoffman, R. G., Scott, J. G., & Adams, R. L. (1998). Effect of intellectual level on neuropsychological test performance: A response to Dodrill (1997). The Clinical Neuropsychologist, 12(4), 560567.CrossRefGoogle Scholar
van Viersen, S., Kroesbergen, E. H., Slot, E. M., & de Bree, E. H. (2014). High reading skills mask dyslexia in gifted children. Journal of Learning Disabilities, 49(2), 189199. https://doi.org/10.1177/0022219414538517 CrossRefGoogle ScholarPubMed
Viana-Sáenz, L., Sastre-Riba, S., Urraca-Martínez, M. L., & Botella, J. (2020). Measurement of executive functioning and high intellectual ability in childhood: A comparative meta-analysis. Sustainability, 12(11), 112.CrossRefGoogle Scholar
Wechsler, D. (2016). WISC-V: Manuel d’interprétation. Pearson - Edition du Centre de Psychologie Appliquée.Google Scholar
Westerhausen, R., Friesen, C. M., Rohani, D. A., Krogsrud, S. K., Tamnes, C. K., Skranes, J. S., Håberg, A. K., Fjell, A. M., & Walhovd, K. B. (2018). The corpus callosum as anatomical marker of intelligence? A critical examination in a large-scale developmental study. Brain Structure and Function, 223(1), 285296. https://doi.org/10.1007/s00429-017-1493-0 CrossRefGoogle Scholar
Zhang, H., Zhang, X., He, Y., & Shi, J. (2016). Inattentional blindness in 9- to 10-year-old intellectually gifted children. Gifted Child Quarterly, 60(4), 287295. https://doi.org/10.1177/0016986216657158 CrossRefGoogle Scholar
Zimmermann, P., & Leclercq, M. (2002). Neuropsychological aspects of attentional functions and disturbances. In Leclercq, M. & Zimmermann, P. (Eds), Applied neuropsychology of Attention: Theory, Diagnosis and Rehabilitation (pp. 5685). Psychology Press.Google Scholar