Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T14:39:46.744Z Has data issue: false hasContentIssue false

Characterizing the Normal Developmental Trajectory of Expressive Language Lateralization Using Magnetoencephalography

Published online by Cambridge University Press:  04 August 2011

Darren S. Kadis
Affiliation:
Division of Neurology, Hospital for Sick Children, Toronto, Ontario Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario
Elizabeth W. Pang
Affiliation:
Division of Neurology, Hospital for Sick Children, Toronto, Ontario Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario Department of Paediatrics, Division of Neurology, University of Toronto, Toronto, Ontario
Travis Mills
Affiliation:
Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario
Margot J. Taylor
Affiliation:
Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario Department of Psychology, University of Toronto, Toronto, Ontario
Mary Pat McAndrews
Affiliation:
Department of Psychology, University of Toronto, Toronto, Ontario Brain Imaging & Behaviour Systems, Toronto Western Research Institute, Toronto, Ontario
Mary Lou Smith*
Affiliation:
Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario Department of Psychology, University of Toronto, Toronto, Ontario Department of Psychology, Hospital for Sick Children, Toronto, Ontario
*
Correspondence and reprint requests to: Mary Lou Smith, Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, North, Mississauga, ON L5L 1C6 Canada. E-mail: marylou.smith@utoronto.ca

Abstract

To characterize the developmental trajectory for expressive language representation and to test competing explanations for the relative neuroplasticity of language in childhood, we studied 28 healthy children and adolescents (aged 5–19 years) participating in a covert verb generation task in magnetoencephalography. Lateralization of neuromagnetic responses in the frontal lobe was quantified using a bootstrap statistical thresholding procedure for differential beamformer analyses. We observed a significant positive correlation between left hemisphere lateralization and age. Findings suggest that adult-typical left hemisphere lateralization emerges from an early bilateral language network, which may explain the pediatric advantage for interhemispheric plasticity of language. (JINS, 2011, 17, 896–904)

Type
Regular Articles
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballantyne, A.O., Spilkin, A.M., Hesselink, J., Trauner, D.A. (2008). Plasticity in the developing brain: Intellectual, language and academic functions in children with ischaemic perinatal stroke. Brain, 131(Pt 11), 29752985.CrossRefGoogle ScholarPubMed
Bates, E., Reilly, J., Wulfeck, B., Dronkers, N., Opie, M., Fenson, J., Herbst, K. (2001). Differential effects of unilateral lesions on language production in children and adults. Brain and Language, 79(2), 223265.CrossRefGoogle ScholarPubMed
Bird, H., Franklin, S., Howard, D. (2001). Age of acquisition and imageability ratings for a large set of words, including verbs and function words. Behavior Research Methods, Instruments, & Computers, 33(1), 7379.CrossRefGoogle ScholarPubMed
Boatman, D., Freeman, J., Vining, E., Pulsifer, M., Miglioretti, D., Minahan, R., McKhann, G. (1999). Language recovery after left hemispherectomy in children with late-onset seizures. Annals of Neurology, 46(4), 579586.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Branch, C., Milner, B., Rasmussen, T. (1964). Intracarotid sodium amytal for the lateralization of cerebral speech dominance; observations in 123 patients. Journal of Neurosurgery, 21, 399405.CrossRefGoogle ScholarPubMed
Brazdil, M., Zakopcan, J., Kuba, R., Fanfrdlova, Z., Rektor, I. (2003). Atypical hemispheric language dominance in left temporal lobe epilepsy as a result of the reorganization of language functions. Epilepsy & Behavior, 4(4), 414419.CrossRefGoogle ScholarPubMed
Brown, T.T., Lugar, H.M., Coalson, R.S., Miezin, F.M., Petersen, S.E., Schlaggar, B.L. (2005). Developmental changes in human cerebral functional organization for word generation. Cerebral Cortex, 15(3), 275290.CrossRefGoogle ScholarPubMed
Burgund, E.D., Kang, H.C., Kelly, J.E., Buckner, R.L., Snyder, A.Z., Petersen, S.E., Schlaggar, B.L. (2002). The feasibility of a common stereotactic space for children and adults in fMRI studies of development. Neuroimage, 17(1), 184200.CrossRefGoogle ScholarPubMed
Cycowicz, Y.M., Friedman, D., Rothstein, M., Snodgrass, J.G. (1997). Picture naming by young children: Norms for name agreement, familiarity, and visual complexity. Journal of Experimental Child Psychology, 65, 171237.CrossRefGoogle ScholarPubMed
Dogdas, B., Shattuck, D.W., Leahy, R.M. (2005). Segmentation of skull and scalp in 3-D human MRI using mathematical morphology. Human Brain Mapping, 26(4), 273285.CrossRefGoogle ScholarPubMed
Duncan, J.D., Moss, S.D., Bandy, D.J., Manwaring, K., Kaplan, A.M., Reiman, E.M., Wodrich, D.L. (1997). Use of positron emission tomography for presurgical localization of eloquent brain areas in children with seizures. Pediatric Neurosurgery, 26(3), 144156.CrossRefGoogle ScholarPubMed
Dunn, L.M., Dunn, L.M. (1997). Peabody Picture Vocabulary Test – 3rd edition. Circle Pines, MN: American Guidance Service.Google Scholar
Everts, R., Lidzba, K., Wilke, M., Kiefer, C., Mirdasini, M., Schroth, G., Steinlin, M. (2009). Strengthening of laterality of verbal and visuospatial functions during childhood and adolescence. Human Brain Mapping, 30, 473483.CrossRefGoogle ScholarPubMed
Everts, R., Lidzba, K., Wilke, M., Kiefer, C., Wingeier, K., Schroth, G., Steinlin, M. (2010). Lateralization of cognitive functions after stroke in childhood. Brain Injury, 24(6), 859870.CrossRefGoogle ScholarPubMed
Fenson, L., Dale, P.S., Reznick, J.S., Thal, D., Bates, E., Hartung, J.P., Reilly, J.S. (1993). The MacArthur Communicative Development Inventories: User's guide and technical manual. Baltimore: Paul H. Brokes Publishing Co.Google Scholar
Friston, K. (2003). Introduction: Experimental design and statistical parameter mapping. In R. Frackowiak (Ed.), Human brain function (2nd ed.). Boston: Elsevier Academic Press.Google Scholar
Gaillard, W.D., Hertz-Pannier, L., Mott, S.H., Barnett, A.S., LeBihan, D., Theodore, W.H. (2000). Functional anatomy of cognitive development: FMRI of verbal fluency in children and adults. Neurology, 54(1), 180185.CrossRefGoogle ScholarPubMed
Gaillard, W.D., Sachs, B.C., Whitnah, J.R., Ahmad, Z., Balsamo, L.M., Petrella, J.R., Grandin, C.B. (2003). Developmental aspects of language processing: FMRI of verbal fluency in children and adults. Human Brain Mapping, 18(3), 176185.CrossRefGoogle ScholarPubMed
Helmstaedter, C., Kurthen, M., Linke, D.B., Elger, C.E. (1997). Patterns of language dominance in focal left and right hemisphere epilepsies: Relation to MRI findings, EEG, sex, and age at onset of epilepsy. Brain and Cognition, 33(2), 135150.CrossRefGoogle ScholarPubMed
Hirata, M., Kato, A., Taniguchi, M., Saitoh, Y., Ninomiya, H., Ihara, A., Yoshimine, T. (2004). Determination of language dominance with synthetic aperture magnetometry: Comparison with the Wada test. Neuroimage, 23(1), 4653.CrossRefGoogle ScholarPubMed
Holland, S.K., Plante, E., Weber Byars, A., Strawsburg, R.H., Schmithorst, V.J., Ball, W.S. Jr. (2001). Normal fMRI brain activation patterns in children performing a verb generation task. Neuroimage, 14(4), 837843.CrossRefGoogle ScholarPubMed
Kadis, D.S., Iida, K., Kerr, E.N., Logan, W.J., McAndrews, M.P., Ochi, A., Smith, M.L. (2007). Intrahemispheric reorganization of language in children with medically intractable epilepsy of the left hemisphere. Journal of the International Neuropsychological Society, 13(3), 505516.CrossRefGoogle ScholarPubMed
Kadis, D.S., Kerr, E.N., Rutka, J.T., Snead, O.C. III, Weiss, S.K., Smith, M.L. (2009). Pathology type does not predict language lateralization in children with medically intractable epilepsy. Epilepsia, 50(6), 14981504.CrossRefGoogle Scholar
Kadis, D.S., Smith, M.L., Mills, T., Pang, E.W. (2008). Expressive language mapping in children using MEG; MEG localization of expressive language cortex in healthy children: Application to paediatric clinical populations. Down Syndrome Quarterly, 10(2), 512.Google Scholar
McIntosh, A.R., Kovacevic, N., Itier, R.J. (2008). Increased brain signal variability accompanies lower behavioral variability in development. PLoS Computational Biology, 4(7), e1000106.CrossRefGoogle ScholarPubMed
Misic, B., Mills, T., Taylor, M.J., McIntosh, A.R. (2010). Brain noise is task dependent and region specific. Journal of Neurophysiology, 104(5), 26672676.CrossRefGoogle ScholarPubMed
Muller, R.A., Rothermel, R.D., Behen, M.E., Muzik, O., Chakraborty, P.K., Chugani, H.T. (1999). Language organization in patients with early and late left-hemisphere lesion: A PET study. Neuropsychologia, 37(5), 545557.CrossRefGoogle ScholarPubMed
Muller, R.A., Rothermel, R.D., Behen, M.E., Muzik, O., Mangner, T.J., Chakraborty, P.K., Chugani, H.T. (1998). Brain organization of language after early unilateral lesion: A PET study. Brain and Language, 62(3), 422451.CrossRefGoogle ScholarPubMed
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113.CrossRefGoogle ScholarPubMed
Pataraia, E., Simos, P.G., Castillo, E.M., Billingsley-Marshall, R.L., McGregor, A.L., Breier, J.I., Papanicolaou, A.C. (2004). Reorganization of language-specific cortex in patients with lesions or mesial temporal epilepsy. Neurology, 63(10), 18251832.CrossRefGoogle ScholarPubMed
Quraan, M.A., Moses, S.N., Hung, Y., Mills, T., Taylor, M.J. (2011). Detection and localization of evoked deep brain activity using MEG. Human Brain Mapping, 32(5), 812827.CrossRefGoogle ScholarPubMed
Rasmussen, T., Milner, B. (1977). The role of early left-brain injury in determining lateralization of cerebral speech functions. Annals of the New York Academy of Sciences, 299, 355369.CrossRefGoogle ScholarPubMed
Reilly, J.S., Bates, E.A., Marchman, V.A. (1998). Narrative discourse in children with early focal brain injury. Brain and Language, 61(3), 335375.CrossRefGoogle ScholarPubMed
Ressel, V., Wilke, M., Lidzba, K., Lutzenberger, W., Krageloh-Mann, I. (2008). Increases in language lateralization in normal children as observed using magnetoencephalography. Brain and Language, 106(3), 167176.CrossRefGoogle ScholarPubMed
Robinson, S.E., Vrba, J. (1999). Functional neuroimaging by synthetic aperture magnetometry (SAM). Sendai: Tohoku University Press.Google Scholar
Saltzman-Benaiah, J., Scott, K., Smith, M.L. (2003). Factors associated with atypical speech representation in children with intractable epilepsy. Neuropsychologia, 41(14), 19671974.CrossRefGoogle ScholarPubMed
Sandor, S., Leahy, R. (1997). Surface-based labeling of cortical anatomy using a deformable atlas. IEEE Transactions on Medical Imaging, 16(1), 4154.CrossRefGoogle ScholarPubMed
Satz, P., Strauss, E., Wada, J., Orsini, D.L. (1988). Some correlates of intra- and interhemispheric speech organization after left focal brain injury. Neuropsychologia, 26(2), 345350.CrossRefGoogle ScholarPubMed
Sekihara, K., Nagarajan, S.S., Poeppel, D., Marantz, A., Miyashita, Y. (2001). Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique. IEEE Transactions on Bio-Medical Engineering, 48(7), 760771.CrossRefGoogle ScholarPubMed
Shattuck, D.W., Leahy, R.M. (2002). BrainSuite: An automated cortical surface identification tool. Medical Image Analysis, 6(2), 129142.CrossRefGoogle ScholarPubMed
Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M. (2001). Magnetic resonance image tissue classification using a partial volume model. Neuroimage, 13(5), 856876.CrossRefGoogle ScholarPubMed
Snodgrass, J.G., Vanderward, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12(1), 147154.Google Scholar
Springer, J.A., Binder, J.R., Hammeke, T.A., Swanson, S.J., Frost, J.A., Bellgowan, P.S., Mueller, W.M. (1999). Language dominance in neurologically normal and epilepsy subjects: A functional MRI study. Brain, 122(Pt 11), 20332046.CrossRefGoogle ScholarPubMed
Szaflarski, J.P., Holland, S.K., Schmithorst, V.J., Byars, A.W. (2006). fMRI study of language lateralization in children and adults. Human Brain Mapping, 27(3), 202212.CrossRefGoogle ScholarPubMed
Van Veen, B.D., van Drongelen, W., Yuchtman, M., Suzuki, A. (1997). Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on Bio-Medical Engineering, 44(9), 867880.CrossRefGoogle ScholarPubMed
Vargha-Khadem, F., O'Gorman, A.M., Watters, G.V. (1985). Aphasia and handedness in relation to hemispheric side, age at injury and severity of cerebral lesion during childhood. Brain, 108(Pt 3), 677696.CrossRefGoogle ScholarPubMed
Vrba, J., Robinson, S.E. (2001). Signal processing in magnetoencephalography. Methods, 25(2), 249271.CrossRefGoogle ScholarPubMed
Williams, K.T. (1997). Expressive Vocabulary Test. Circle Pines, MN: American Guidance Service.Google Scholar
Wood, A.G., Harvey, A.S., Wellard, R.M., Abbott, D.F., Anderson, V., Kean, M., Jackson, G.D. (2004). Language cortex activation in normal children. Neurology, 63(6), 10351044.CrossRefGoogle ScholarPubMed