Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-rxvp8 Total loading time: 0.373 Render date: 2021-06-15T20:44:27.821Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Social Cognition and Emotional Assessment (SEA) is a Marker of Medial and Orbital Frontal Functions: A Voxel-Based Morphometry Study in Behavioral Variant of Frontotemporal Degeneration

Published online by Cambridge University Press:  16 November 2012

Maxime Bertoux
Affiliation:
Université Pierre et Marie Curie (Sorbonne Université) - Paris 6, Paris, France UMRS 975 – Institut du Cerveau et de la Moelle Epinière - Institut National de la Santé et de la Recherche Médicale, Paris, France Institut de la Mémoire et de la Maladie d'Alzheimer, Groupe Hospitalier Pitié-Salpêtrière, Paris, France Centre de Références Démences Rares, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
Emmanuelle Volle
Affiliation:
Université Pierre et Marie Curie (Sorbonne Université) - Paris 6, Paris, France UMRS 975 – Institut du Cerveau et de la Moelle Epinière - Institut National de la Santé et de la Recherche Médicale, Paris, France
Aurélie Funkiewiez
Affiliation:
Institut de la Mémoire et de la Maladie d'Alzheimer, Groupe Hospitalier Pitié-Salpêtrière, Paris, France Centre de Références Démences Rares, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
Leonardo Cruz de Souza
Affiliation:
Université Pierre et Marie Curie (Sorbonne Université) - Paris 6, Paris, France UMRS 975 – Institut du Cerveau et de la Moelle Epinière - Institut National de la Santé et de la Recherche Médicale, Paris, France Institut de la Mémoire et de la Maladie d'Alzheimer, Groupe Hospitalier Pitié-Salpêtrière, Paris, France Centre de Références Démences Rares, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
Delphine Leclercq
Affiliation:
Service de Neuroradiologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
Bruno Dubois
Affiliation:
Université Pierre et Marie Curie (Sorbonne Université) - Paris 6, Paris, France UMRS 975 – Institut du Cerveau et de la Moelle Epinière - Institut National de la Santé et de la Recherche Médicale, Paris, France Institut de la Mémoire et de la Maladie d'Alzheimer, Groupe Hospitalier Pitié-Salpêtrière, Paris, France Centre de Références Démences Rares, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
Corresponding
E-mail address:

Abstract

The aim of this study was to explore the cerebral correlates of functional deficits that occur in behavioral variant frontotemporal dementia (bvFTD). A specific neuropsychological battery, the Social cognition & Emotional Assessment (SEA; Funkiewiez et al., 2012), was used to assess impaired social and emotional functions in 20 bvFTD patients who also underwent structural MRI scanning. The SEA subscores of theory of mind, reversal-learning tests, facial emotion identification, and apathy evaluation were entered as covariates in a voxel-based morphometry analysis. The results revealed that the gray matter volume in the rostral part of the medial prefrontal cortex [mPFC, Brodmann area (BA) 10] was associated with scores on the theory of mind subtest, while gray matter volume within the orbitofrontal (OFC) and ventral mPFC (BA 11 and 47) was related to the scores observed in the reversal-learning subtest. Gray matter volume within BA 9 in the mPFC was correlated with scores on the emotion recognition subtest, and the severity of apathetic symptoms in the Apathy scale covaried with gray matter volume in the lateral PFC (BA 44/45). Among these regions, the mPFC and OFC cortices have been shown to be atrophied in the early stages of bvFTD. In addition, SEA and its abbreviated version (mini-SEA) have been demonstrated to be sensitive to early impairments in bvFTD (Bertoux et al., 2012). Taken together, these results suggest a differential involvement of orbital and medial prefrontal subregions in SEA subscores and support the use of the SEA to evaluate the integrity of these regions in the early stages of bvFTD. (JINS, 2012, 18, 972–985)

Type
Symposia
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

Adenzato, M., Cavallo, M., Enrici, I. (2010). Theory of mind ability in the behavioural variant of frontotemporal dementia: An analysis of the neural, cognitive, and social levels. Neuropsychologia, 48(1), 212.CrossRefGoogle ScholarPubMed
Adolphs, R. (2002). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12(2), 169177.CrossRefGoogle ScholarPubMed
Agosta, F., Canu, E., Sarro, L., Comi, G., Filippi, M. (2012). Neuroimaging findings in frontotemporal lobar degeneration spectrum of disorders. Cortex, 48(4), 389413.CrossRefGoogle ScholarPubMed
Allman, J.M., Tetreault, N.A., Hakeem, A.Y., Manaye, K.F., Semendeferi, K., Erwin, J.M., Hof, P.R. (2011). The von Economo neurons in the frontoinsular and anterior cingulate cortex. Annals of the New York Academy of Sciences, 1225, 5971.CrossRefGoogle ScholarPubMed
Amodio, D.M., Frith, C.D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Review Neuroscience, 7(4), 268277.CrossRefGoogle ScholarPubMed
Apostolova, L.G., Thompson, P.M. (2008). Mapping progressive brain structural changes in early Alzheimer's disease and mild cognitive impairment. Neuropsychologia, 46(6), 15971612.CrossRefGoogle ScholarPubMed
Aron, A.R., Fletcher, P.C., Bullmore, E.T., Sahakian, B.J., Robbins, T.W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115116.CrossRefGoogle ScholarPubMed
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95113.CrossRefGoogle ScholarPubMed
Ashburner, J., Friston, K.J. (2005). Unified segmentation. Neuroimage, 26(3), 839851.CrossRefGoogle ScholarPubMed
Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12(5), 193200.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Ring, H., Moriarty, J., Schmitz, B., Costa, D., Ell, P. (1994). Recognition of mental state terms. Clinical findings in children with autism and a functional neuroimaging study of normal adults. The British Journal of Psychiatry, 165(5), 640649.CrossRefGoogle Scholar
Beckmann, M., Johansen-Berg, H., Rushworth, M.F. (2009). Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. Journal of Neuroscience, 29(4), 11751190.CrossRefGoogle ScholarPubMed
Bertoux, M., Delavest, M., de Souza, L.C., Funkiewiez, A., Lepine, J.P., Fossati, P., Sarazin, M. (2012). Social cognition and emotional assessment differentiates frontotemporal dementia from depression. Journal of Neurology, Neurosurgery and Psychiatry, 83(4), 411416.CrossRefGoogle ScholarPubMed
Blair, K.S., Smith, B.W., Mitchell, D.G., Morton, J., Vythilingam, M., Pessoa, L., Blair, R.J. (2007). Modulation of emotion by cognition and cognition by emotion. Neuroimage, 35(1), 430440.CrossRefGoogle Scholar
Boccardi, M., Sabattoli, F., Laakso, M.P., Testa, C., Rossi, R., Beltramello, A., Frisoni, G.B. (2005). Frontotemporal dementia as a neural system disease. Neurobiology of Aging, 26(1), 3744.CrossRefGoogle ScholarPubMed
Botvinick, M.M. (2007). Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cognive and Affective Behavioral Neuroscience, 7(4), 356366.CrossRefGoogle ScholarPubMed
Braver, T.S., Barch, D.M., Gray, J.R., Molfese, D.L., Snyder, A. (2001). Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cerebral Cortex, 11(9), 825836.CrossRefGoogle ScholarPubMed
Broe, M., Hodges, J.R., Schofield, E., Shepherd, C.E., Kril, J.J., Halliday, G.M. (2003). Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology, 60(6), 10051011.CrossRefGoogle ScholarPubMed
Bush, G., Vogt, B.A., Holmes, J., Dale, A.M., Greve, D., Jenike, M.A., Rosen, B.R. (2002). Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci U S A, 99(1), 523528.CrossRefGoogle ScholarPubMed
Carrington, S.J., Bailey, A.J. (2009). Are there theory of mind regions in the brain? A review of the neuroimaging literature. Human Brain Mapping, 30(8), 23132335.CrossRefGoogle Scholar
Cools, R., Clark, L., Owen, A.M., Robbins, T.W. (2002). Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. Journal of Neuroscience, 22(11), 45634567.CrossRefGoogle ScholarPubMed
Dove, A., Pollmann, S., Schubert, T., Wiggins, C.J., von Cramon, D.Y. (2000). Prefrontal cortex activation in task switching: An event-related fMRI study. Brain Research: Cognitive Brain Research, 9(1), 103109.Google Scholar
Dubois, B., Slachevsky, A., Litvan, I., Pillon, B. (2000). The FAB: A frontal assessment battery at bedside. Neurology, 55(11), 16211626.CrossRefGoogle ScholarPubMed
Ekman, P., Friesen, W.V. (1975). Unmasking the face: A guide to recognizing emotions from facial clues. Oxford: Prentice-Hall.Google Scholar
Elliott, R., Dolan, R.J., Frith, C.D. (2000). Dissociable functions in the medial and lateral orbitofrontal cortex: Evidence from human neuroimaging studies. Cerebral Cortex, 10(3), 308317.CrossRefGoogle ScholarPubMed
Fellows, L.K. (2007). The role of orbitofrontal cortex in decision making: A component process account. Annals of the New York Academy of Sciences, 1121, 421430.CrossRefGoogle ScholarPubMed
Fellows, L.K., Farah, M.J. (2003). Ventromedial frontal cortex mediates affective shifting in humans: Evidence from a reversal learning paradigm. Brain, 126(Pt 8), 18301837.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatry Research, 12(3), 189198.CrossRefGoogle ScholarPubMed
Franceschi, M., Anchisi, D., Pelati, O., Zuffi, M., Matarrese, M., Moresco, R.M., Perani, D. (2005). Glucose metabolism and serotonin receptors in the frontotemporal lobe degeneration. Annals of Neurology, 57(2), 216225.CrossRefGoogle ScholarPubMed
Frith, C.D., Frith, U. (2006). The neural basis of mentalizing. Neuron, 50(4), 531534.CrossRefGoogle ScholarPubMed
Funkiewiez, A., Bertoux, M., de Souza, L.C., Levy, R., Dubois, B. (2012). The SEA (social cognition and emotional assessment): A clinical neuropsychological tool for early diagnosis of frontal variant of frontotemporal lobar degeneration. Neuropsychology, 26(1), 8190.CrossRefGoogle ScholarPubMed
Gallagher, H.L., Happe, F., Brunswick, N., Fletcher, P.C., Frith, U., Frith, C.D. (2000). Reading the mind in cartoons and stories: An fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia, 38(1), 1121.CrossRefGoogle ScholarPubMed
Gehring, W.J., Willoughby, A.R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295(5563), 22792282.CrossRefGoogle ScholarPubMed
Ghahremani, D.G., Monterosso, J., Jentsch, J.D., Bilder, R.M., Poldrack, R.A. (2010). Neural components underlying behavioral flexibility in human reversal learning. Cerebral Cortex, 20(8), 18431852.CrossRefGoogle ScholarPubMed
Gilbert, S.J., Gonen-Yaacovi, G., Benoit, R.G., Volle, E., Burgess, P.W. (2010). Distinct functional connectivity associated with lateral versus medial rostral prefrontal cortex: A meta-analysis. Neuroimage, 53(4), 13591367.CrossRefGoogle ScholarPubMed
Gilbert, S.J., Spengler, S., Simons, J.S., Steele, J.D., Lawrie, S.M., Frith, C.D., Burgess, P.W. (2006). Functional specialization within rostral prefrontal cortex (area 10): A meta-analysis. Journal of Cognitive Neuroscience, 18(6), 932948.CrossRefGoogle ScholarPubMed
Gislason, T.B., Sjogren, M., Larsson, L., Skoog, I. (2003). The prevalence of frontal variant frontotemporal dementia and the frontal lobe syndrome in a population based sample of 85 year olds. Journal of Neurology, Neurosurgery and Psychiatry, 74(7), 867871.CrossRefGoogle Scholar
Goya-Maldonado, R., Walther, S., Simon, J., Stippich, C., Weisbrod, M., Kaiser, S. (2010). Motor impulsivity and the ventrolateral prefrontal cortex. Psychiatry Research, 183(1), 8991.CrossRefGoogle ScholarPubMed
Gregory, C., Lough, S., Stone, V., Erzinclioglu, S., Martin, L., Baron-Cohen, S., Hodges, J.R. (2002). Theory of mind in patients with frontal variant frontotemporal dementia and Alzheimer's disease: Theoretical and practical implications. Brain, 125(Pt 4), 752764.CrossRefGoogle ScholarPubMed
Heberlein, A.S., Padon, A.A., Gillihan, S.J., Farah, M.J., Fellows, L.K. (2008). Ventromedial frontal lobe plays a critical role in facial emotion recognition. Journal of Cognitive Neuroscience, 20(4), 721733.CrossRefGoogle Scholar
Hornak, J., Bramham, J., Rolls, E.T., Morris, R.G., O'Doherty, J., Bullock, P.R., Polkey, C.E. (2003). Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain, 126(Pt 7), 16911712.CrossRefGoogle ScholarPubMed
Hornak, J., O'Doherty, J., Bramham, J., Rolls, E.T., Morris, R.G., Bullock, P.R., Polkey, C.E. (2004). Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. Journal of Cognitive Neuroscience, 16(3), 463478.CrossRefGoogle ScholarPubMed
Hornberger, M., Geng, J., Hodges, J.R. (2011). Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia. Brain, 134(Pt 9), 25022512.CrossRefGoogle ScholarPubMed
Ibach, B., Koch, H., Koller, M., Wolfersdorf, M.; Workgroup for Geriatric Psychiatry of the Psychiatric State Hospitals of Germany; Workgroup for Clinical Research of the Psychiatric State Hospitals of Germany (2003). Hospital admission circumstances and prevalence of frontotemporal lobar degeneration: A multicenter psychiatric state hospital study in Germany. Dementia and Geriatric Cognitive Disorders, 16(4), 253264.CrossRefGoogle Scholar
Kennerley, S.W., Behrens, T.E., Wallis, J.D. (2011). Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nature Neuroscience, 14(12), 15811589.CrossRefGoogle ScholarPubMed
Keysers, C., Gazzola, V. (2007). Integrating simulation and theory of mind: From self to social cognition. Trends in Cognitive Sciences, 11(5), 194196.CrossRefGoogle ScholarPubMed
Koechlin, E., Ody, C., Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302(5648), 11811185.CrossRefGoogle ScholarPubMed
Koechlin, E., Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229235.CrossRefGoogle ScholarPubMed
Kringelbach, M.L., Rolls, E.T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72(5), 341372.CrossRefGoogle ScholarPubMed
Krueger, C.E., Dean, D.L., Rosen, H.J., Halabi, C., Weiner, M., Miller, B.L., Kramer, J.H. (2010). Longitudinal rates of lobar atrophy in frontotemporal dementia, semantic dementia, and Alzheimer's disease. Alzheimer Disease and Associated Disorders, 24(1), 4348.CrossRefGoogle ScholarPubMed
Kumral, E., Bayulkem, G., Evyapan, D., Yunten, N. (2002). Spectrum of anterior cerebral artery territory infarction: Clinical and MRI findings. European Journal of Neurology, 9(6), 615624.CrossRefGoogle ScholarPubMed
Kumral, E., Evyapan, D., Balkir, K. (1999). Acute caudate vascular lesions. Stroke, 30(1), 100108.CrossRefGoogle ScholarPubMed
Lamm, C., Batson, C.D., Decety, J. (2007). The neural substrate of human empathy: Effects of perspective-taking and cognitive appraisal. Journal of Cognitive Neuroscience, 19(1), 4258.CrossRefGoogle ScholarPubMed
Lane, R.D., Reiman, E.M., Bradley, M.M., Lang, P.J., Ahern, G.L., Davidson, R.J., Schwartz, G.E. (1997). Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia, 35(11), 14371444.CrossRefGoogle ScholarPubMed
Lavenu, I., Pasquier, F. (2005). Perception of emotion on faces in frontotemporal dementia and Alzheimer's disease: A longitudinal study. Dementia and Geriatric Cognitive Disorders, 19(1), 3741.CrossRefGoogle ScholarPubMed
Leslie, K.R., Johnson-Frey, S.H., Grafton, S.T. (2004). Functional imaging of face and hand imitation: Towards a motor theory of empathy. Neuroimage, 21(2), 601607.CrossRefGoogle ScholarPubMed
Levy, R., Dubois, B. (2006). Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cerebral Cortex, 16(7), 916928.CrossRefGoogle ScholarPubMed
Lough, S., Kipps, C.M., Treise, C., Watson, P., Blair, J.R., Hodges, J.R. (2006). Social reasoning, emotion and empathy in frontotemporal dementia. Neuropsychologia, 44(6), 950958.CrossRefGoogle ScholarPubMed
Lutz, A., Greischar, L.L., Perlman, D.M., Davidson, R.J. (2009). BOLD signal in insula is differentially related to cardiac function during compassion meditation in experts vs. novices. Neuroimage, 47(3), 10381046.CrossRefGoogle ScholarPubMed
Massimo, L., Powers, C., Moore, P., Vesely, L., Avants, B., Gee, J., Grossman, M. (2009). Neuroanatomy of apathy and disinhibition in frontotemporal lobar degeneration. Dementia and Geriatric Cognitive Disorders, 27(1), 96104.CrossRefGoogle ScholarPubMed
Mattis, S. (1976). Mental status examination for organic mental syndrome in the elderly patients. In L. Bellak & T. Karasu (Eds.), Geriatrics psychiatry: A handbook for psychiatrists and primary care physicians (pp. 77121). New York: Grune & Stratton.Google Scholar
McKhann, G.M., Albert, M.S., Grossman, M., Miller, B., Dickson, D., Trojanowski, J.Q., Work Group on Frontotemporal Dementia and Pick's Disease (2001). Clinical and pathological diagnosis of frontotemporal dementia: Report of the Work Group on Frontotemporal Dementia and Pick's Disease. Archives of Neurology, 58(11), 18031809.CrossRefGoogle ScholarPubMed
Mitchell, D.G., Rhodes, R.A., Pine, D.S., Blair, R.J. (2008). The contribution of ventrolateral and dorsolateral prefrontal cortex to response reversal. Behavioural Brain Research, 187(1), 8087.CrossRefGoogle ScholarPubMed
Mitz, A.R., Godschalk, M., Wise, S.P. (1991). Learning-dependent neuronal activity in the premotor cortex: Activity during the acquisition of conditional motor associations. Journal of Neuroscience, 11(6), 18551872.CrossRefGoogle ScholarPubMed
Nakano, S., Asada, T., Yamashita, F., Kitamura, N., Matsuda, H., Hirai, S., Yamada, T. (2006). Relationship between antisocial behavior and regional cerebral blood flow in frontotemporal dementia. Neuroimage, 32(1), 301306.CrossRefGoogle ScholarPubMed
Neary, D., Snowden, J.S., Gustafson, L., Passant, U., Stuss, D., Black, S., Benson, D.F. (1998). Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology, 51(6), 15461554.CrossRefGoogle ScholarPubMed
Nelson, H.E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex, 12(4), 313324.CrossRefGoogle ScholarPubMed
O'Doherty, J., Kringelbach, M.L., Rolls, E.T., Hornak, J., Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4(1), 95102.CrossRefGoogle ScholarPubMed
O'Doherty, J.P., Dolan, R.J. (2006). The role of human orbitofrontal cortex in reward prediction and behavioural choice: Insights from neuroimaging. In: D. Zald & S.L. Rauch (Eds.), The orbitofrontal cortex. Oxford: Oxford University Press.Google Scholar
Ochsner, K.N., Knierim, K., Ludlow, D.H., Hanelin, J., Ramachandran, T., Glover, G., Mackey, S.C. (2004). Reflecting upon feelings: An fMRI study of neural systems supporting the attribution of emotion to self and other. Journal of Cognitive Neuroscience, 16(10), 17461772.CrossRefGoogle ScholarPubMed
Peelen, M.V., Atkinson, A.P., Vuilleumier, P. (2010). Supramodal representations of perceived emotions in the human brain. Journal of Neuroscience, 30(30), 1012710134.CrossRefGoogle ScholarPubMed
Perry, R.J., Graham, A., Williams, G., Rosen, H., Erzinclioglu, S., Weiner, M., Hodges, J. (2006). Patterns of frontal lobe atrophy in frontotemporal dementia: A volumetric MRI study. Dementia and Geriatric Cognitive Disorders, 22(4), 278287.CrossRefGoogle ScholarPubMed
Picton, T.W., Stuss, D.T., Alexander, M.P., Shallice, T., Binns, M.A., Gillingham, S. (2007). Effects of focal frontal lesions on response inhibition. Cerebral Cortex, 17(4), 826838.CrossRefGoogle ScholarPubMed
Piguet, O., Hornberger, M., Mioshi, E., Hodges, J.R. (2011). Behavioural-variant frontotemporal dementia: Diagnosis, clinical staging, and management. Lancet Neurology, 10(2), 162172.CrossRefGoogle ScholarPubMed
Rabinovici, G.D., Seeley, W.W., Kim, E.J., Gorno-Tempini, M.L., Rascovsky, K., Pagliaro, T.A., Rosen, H.J. (2007). Distinct MRI atrophy patterns in autopsy-proven Alzheimer's disease and frontotemporal lobar degeneration. American Journal of Alzheimer's Disease and Other Dementias, 22(6), 474488.CrossRefGoogle ScholarPubMed
Rahman, S., Sahakian, B.J., Hodges, J.R., Rogers, R.D., Robbins, T.W. (1999). Specific cognitive deficits in mild frontal variant frontotemporal dementia. Brain, 122(Pt 8), 14691493.CrossRefGoogle ScholarPubMed
Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Grossman, M., Miller, B.L., on behalf of the International bvFTD Criteria Consortium (FTDC) (2012). Reply: Considering the frontomedian cortex in revised criteria for behavioural variant frontotemporal dementia. Brain, 135(Pt 4), e213.CrossRefGoogle Scholar
Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Neuhaus, J., Miller, B.L. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134(Pt 9), 24562477.CrossRefGoogle ScholarPubMed
Roca, M., Torralva, T., Gleichgerrcht, E., Woolgar, A., Thompson, R., Duncan, J., Manes, F. (2011). The role of Area 10 (BA10) in human multitasking and in social cognition: A lesion study. Neuropsychologia, 49(11), 35253531.CrossRefGoogle ScholarPubMed
Roesch, M.R., Olson, C.R. (2003). Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. Journal of Neurophysiology, 90(3), 17661789.CrossRefGoogle ScholarPubMed
Rolls, E.T., Hornak, J., Wade, D., McGrath, J. (1994). Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. Journal of Neurology, Neurosurgery and Psychiatry, 57(12), 15181524.CrossRefGoogle ScholarPubMed
Rosen, H.J., Allison, S.C., Schauer, G.F., Gorno-Tempini, M.L., Weiner, M.W., Miller, B.L. (2005). Neuroanatomical correlates of behavioural disorders in dementia. Brain, 128(Pt 11), 26122625.CrossRefGoogle ScholarPubMed
Rushworth, M.F., Behrens, T.E. (2008). Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neuroscience, 11(4), 389397.CrossRefGoogle ScholarPubMed
Rushworth, M.F., Behrens, T.E., Rudebeck, P.H., Walton, M.E. (2007). Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends in Cognitive Sciences, 11(4), 168176.CrossRefGoogle ScholarPubMed
Rushworth, M.F., Walton, M.E., Kennerley, S.W., Bannerman, D.M. (2004). Action sets and decisions in the medial frontal cortex. Trends in Cognitive Sciences, 8(9), 410417.CrossRefGoogle ScholarPubMed
Salmon, E., Garraux, G., Delbeuck, X., Collette, F., Kalbe, E., Zuendorf, G., Herholz, K. (2003). Predominant ventromedial frontopolar metabolic impairment in frontotemporal dementia. Neuroimage, 20(1), 435440.CrossRefGoogle ScholarPubMed
Sarazin, M., Dubois, B., de Souza, L.C., Bertoux, M. (2012). Should the social cognition and emotional assessment replace standard neuropsychological tests for frontotemporal dementia? Expert Reviews in Neurotherapeutics, 12(6), 633635.CrossRefGoogle ScholarPubMed
Schroeter, M.L. (2012). Considering the frontomedian cortex in revised criteria for behavioural variant frontotemporal dementia. Brain, 135(Pt 4), e213; author reply e214. doi:aws030.CrossRefGoogle ScholarPubMed
Schroeter, M.L., Raczka, K., Neumann, J., von Cramon, D.Y. (2008). Neural networks in frontotemporal dementia--a meta-analysis. Neurobiology of Aging, 29(3), 418426.CrossRefGoogle ScholarPubMed
Schroeter, M.L., Raczka, K., Neumann, J., Yves von Cramon, D. (2007). Towards a nosology for frontotemporal lobar degenerations-a meta-analysis involving 267 subjects. Neuroimage, 36(3), 497510.CrossRefGoogle ScholarPubMed
Seelaar, H., Rohrer, J.D., Pijnenburg, Y.A., Fox, N.C., van Swieten, J.C. (2011). Clinical, genetic and pathological heterogeneity of frontotemporal dementia: A review. Journal of Neurology, Neurosurgery and Psychiatry, 82(5), 476486.CrossRefGoogle ScholarPubMed
Seeley, W.W. (2010). Anterior insula degeneration in frontotemporal dementia. Brain Structure and Function, 214(5-6), 465475.CrossRefGoogle ScholarPubMed
Seeley, W.W., Crawford, R., Rascovsky, K., Kramer, J.H., Weiner, M., Miller, B.L., Gorno-Tempini, M.L. (2008). Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Archives of Neurology, 65(2), 249255.CrossRefGoogle ScholarPubMed
Seeley, W.W., Zhou, J., Kim, E.J. (2011). Frontotemporal dementia: What can the behavioral variant teach us about human brain organization? Neuroscientist, 18(4), 373385.CrossRefGoogle ScholarPubMed
Seilhean, D., Le Ber, I., Sarazin, M., Lacomblez, L., Millecamps, S., Salachas, F., Duyckaerts, C. (2011). Fronto-temporal lobar degeneration: Neuropathology in 60 cases. Journal of Neural Transmission, 118(5), 753764.CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S.G., Aharon-Peretz, J., Perry, D. (2009). Two systems for empathy: A double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain, 132(Pt 3), 617627.CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S.G., Tomer, R., Berger, B.D., Goldsher, D., Aharon-Peretz, J. (2005). Impaired “affective theory of mind” is associated with right ventromedial prefrontal damage. Cognitive Behavioral Neurology, 18(1), 5567.CrossRefGoogle ScholarPubMed
Starkstein, S.E., Mayberg, H.S., Preziosi, T.J., Andrezejewski, P., Leiguarda, R., Robinson, R.G. (1992). Reliability, validity, and clinical correlates of apathy in Parkinson's disease. Journal of Neuropsychiatry and Clinical Neurosciences, 4(2), 134139.Google ScholarPubMed
Stone, V.E., Baron-Cohen, S., Knight, R.T. (1998). Frontal lobe contributions to theory of mind. Journal of Cognitive Neuroscience, 10(5), 640656.CrossRefGoogle ScholarPubMed
Torralva, T., Kipps, C.M., Hodges, J.R., Clark, L., Bekinschtein, T., Roca, M., Manes, F. (2007). The relationship between affective decision-making and theory of mind in the frontal variant of fronto-temporal dementia. Neuropsychologia, 45(2), 342349.CrossRefGoogle ScholarPubMed
Torralva, T., Roca, M., Gleichgerrcht, E., Bekinschtein, T., Manes, F. (2009). A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia. Brain, 132(Pt 5), 12991309.CrossRefGoogle ScholarPubMed
Tsuchida, A., Doll, B.B., Fellows, L.K. (2010). Beyond reversal: A critical role for human orbitofrontal cortex in flexible learning from probabilistic feedback. Journal of Neuroscience, 30(50), 1686816875.CrossRefGoogle ScholarPubMed
Van der Linden, M., Coyette, F., Thomas-Anterion, C., Sellal, F., Poitrenaud, J., Gély-Nargeot, M.C., Deweer, B. (2006). L’évaluation des troubles de la mémoire – Présentation de qutre tests de mémoire épisodique (avec leur étalonnage). Paris: Solal.Google Scholar
Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30(3), 829858.CrossRefGoogle ScholarPubMed
Viskontas, I.V., Possin, K.L., Miller, B.L. (2007). Symptoms of frontotemporal dementia provide insights into orbitofrontal cortex function and social behavior. Annals of the New York Academy of Sciences, 1121, 528545.CrossRefGoogle ScholarPubMed
Vogeley, K., Bussfeld, P., Newen, A., Herrmann, S., Happe, F., Falkai, P., Zilles, K. (2001). Mind reading: Neural mechanisms of theory of mind and self-perspective. Neuroimage, 14(1 Pt 1), 170181.CrossRefGoogle ScholarPubMed
Walther, S., Goya-Maldonado, R., Stippich, C., Weisbrod, M., Kaiser, S. (2010). A supramodal network for response inhibition. Neuroreport, 21(3), 191195.CrossRefGoogle ScholarPubMed
Wheeler, E.Z., Fellows, L.K. (2008). The human ventromedial frontal lobe is critical for learning from negative feedback. Brain, 131(Pt 5), 13231331.CrossRefGoogle ScholarPubMed
Zaki, J., Weber, J., Bolger, N., Ochsner, K. (2009). The neural bases of empathic accuracy. Proceedings of the National Academy of Sciences of the United States of America, 106(27), 1138211387.CrossRefGoogle ScholarPubMed
Zald, D.H., Andreotti, C. (2010). Neuropsychological assessment of the orbital and ventromedial prefrontal cortex. Neuropsychologia, 48(12), 33773391.CrossRefGoogle ScholarPubMed
Zamboni, G., Huey, E.D., Krueger, F., Nichelli, P.F., Grafman, J. (2008). Apathy and disinhibition in frontotemporal dementia: Insights into their neural correlates. Neurology, 71(10), 736742.CrossRefGoogle ScholarPubMed
Supplementary material: File

Bertoux et al. supplementary material

Supplementary figures

Download Bertoux et al. supplementary material(File)
File 2 MB
45
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Social Cognition and Emotional Assessment (SEA) is a Marker of Medial and Orbital Frontal Functions: A Voxel-Based Morphometry Study in Behavioral Variant of Frontotemporal Degeneration
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Social Cognition and Emotional Assessment (SEA) is a Marker of Medial and Orbital Frontal Functions: A Voxel-Based Morphometry Study in Behavioral Variant of Frontotemporal Degeneration
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Social Cognition and Emotional Assessment (SEA) is a Marker of Medial and Orbital Frontal Functions: A Voxel-Based Morphometry Study in Behavioral Variant of Frontotemporal Degeneration
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *