Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-l84fh Total loading time: 0.381 Render date: 2021-10-26T01:49:33.324Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Role of Reversal Learning Impairment in Social Disinhibition following Severe Traumatic Brain Injury

Published online by Cambridge University Press:  12 January 2016

Katherine Osborne-Crowley*
Affiliation:
School of Psychology, The University of New South Wales, New South Wales, Australia
Skye McDonald
Affiliation:
School of Psychology, The University of New South Wales, New South Wales, Australia
Jacqueline A. Rushby
Affiliation:
School of Psychology, The University of New South Wales, New South Wales, Australia
*
Correspondence and reprint requests to: Katherine Osborne-Crowley, School of Psychology, The University of New South Wales, New South Wales, 2052, Australia. E-mail: k.osbornecrowley@unsw.edu.au

Abstract

Objectives: The current study aimed to determine whether reversal learning impairments and feedback-related negativity (FRN), reflecting reward prediction error signals generated by negative feedback during the reversal learning tasks, were associated with social disinhibition in a group of participants with traumatic brain injury (TBI). Methods: Number of reversal errors on a social and a non-social reversal learning task and FRN were examined for 21 participants with TBI and 21 control participants matched for age. Participants with TBI were also divided into low and high disinhibition groups based on rated videotaped interviews. Results: Participants with TBI made more reversal errors and produced smaller amplitude FRNs than controls. Furthermore, participants with TBI high on social disinhibition made more reversal errors on the social reversal learning task than did those low on social disinhibition. FRN amplitude was not related to disinhibition. Conclusions: These results suggest that impairment in the ability to update behavior when social reinforcement contingencies change plays a role in social disinhibition after TBI. Furthermore, the social reversal learning task used in this study may be a useful neuropsychological tool for detecting susceptibility to acquired social disinhibition following TBI. Finally, that the FRN amplitude was not associated with social disinhibition suggests that reward prediction error signals are not critical for behavioral adaptation in the social domain. (JINS, 2016, 21, 303–313)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R., Damasio, H., Tranel, D., & Damasio, A.R. (1996). Cortical systems for the recognition of emotion in facial expressions. The Journal of Neuroscience, 16(23), 76787687.Google ScholarPubMed
Arciniegas, D.B., & Wortzel, H.S. (2014). Emotional and behavioral dyscontrol after traumatic brain injury. Psychiatric Clinics of North America, 37(1), 3153. doi:10.1016/j.psc.2013.12.001 CrossRefGoogle ScholarPubMed
Bachevalier, J., & Loveland, K.A. (2006). The orbitofrontal–amygdala circuit and self-regulation of social–emotional behavior in autism. Neuroscience & Biobehavioral Reviews, 30(1), 97117. doi:10.1016/j.neubiorev.2005.07.002 CrossRefGoogle ScholarPubMed
Barrash, J., Tranel, D., & Anderson, S.W. (2000). Acquired personality disturbances associated with bilateral damage to the ventromedial prefrontal region. Developmental Neuropsychology, 18(3), 355381. doi:10.1207/S1532694205Barrash CrossRefGoogle ScholarPubMed
Beer, J.S., John, O.P., Scabini, D., & Knight, R.T. (2006). Orbitofrontal cortex and social behavior: Integrating self-monitoring and emotion-cognition interactions. Journal of Cognitive Neuroscience, 18(6), 871879. doi:10.1162/jocn.2006.18.6.871 CrossRefGoogle ScholarPubMed
Benson, P.J., & Perrett, D.I. (1991). Perception and recognition of photographic quality facial caricatures: Implications for the recognition of natural images. European Journal of Cognitive Psychology, 3(1), 105135. doi:10.1080/09541449108406222 CrossRefGoogle Scholar
Bigler, E.D. (2007). Anterior and middle cranial fossa in traumatic brain injury: Relevant neuroanatomy and neuropathology in the study of neuropsychological outcome. Neuropsychology, 21(5), 515531. doi:10.1037/0894-4105.21.5.515 17784800 CrossRefGoogle Scholar
Blair, R.J.R., & Cipolotti, L. (2000). Impaired social response reversal ‘A case of acquired sociopathy’. Brain, 123(6), 11221141. doi:10.1093/brain/123.6.1122 CrossRefGoogle ScholarPubMed
Boksem, M.A., & De Cremer, D. (2010). Fairness concerns predict medial frontal negativity amplitude in ultimatum bargaining. Social Neuroscience, 5(1), 118128. doi:10.1080/17470910903202666 CrossRefGoogle ScholarPubMed
Brooks, N., & McKinlay, W. (1983). Personality and behavioural change after severe blunt head injury - A relative’s view. Journal of Neurology, Neurosurgery, & Psychiatry, 46(4), 336344. doi:10.1136/jnnp.46.4.336 CrossRefGoogle ScholarPubMed
Butter, C.M., Mishkin, M., & Mirsky, A.F. (1968). Emotional responses toward humans in monkeys with selective frontal lesions. Physiology & Behavior, 3(2), 213215. doi:10.1016/0031-9384(68)90087-5 CrossRefGoogle Scholar
Chase, H.W., Swainson, R., Durham, L., Benham, L., & Cools, R. (2011). Feedback-related negativity codes prediction error but not behavioral adjustment during probabilistic reversal learning. Journal of Cognitive Neuroscience, 23(4), 936946. doi:10.1162/jocn.2010.21456 CrossRefGoogle Scholar
Cicerone, K.D., & Tanenbaum, L.N. (1997). Disturbance of social cognition after traumatic orbitofrontal brain injury. Archives of Clinical Neuropsychology, 12(2), 173188. doi:10.1093/arclin/12.2.173 CrossRefGoogle ScholarPubMed
Cohen, M.X., & Ranganath, C. (2007). Reinforcement learning signals predict future decisions. The Journal of Neuroscience, 27(2), 371378. doi:10.1523/JNEUROSCI.4421-06.2007 CrossRefGoogle ScholarPubMed
Corrigan, J.D., Selassie, A.W., & Orman, J.A.L. (2010). The epidemiology of traumatic brain injury. The Journal of Head Trauma Rehabilitation, 25(2), 7280. doi:10.1097/HTR.0b013e3181ccc8b4 CrossRefGoogle ScholarPubMed
Cramer, D., & Howitt, D. (2004). The Sage dictionary of statistics: A practical resource for students in the social sciences. Thousand Oaks: Sage.CrossRefGoogle Scholar
Damasio, H., Grabowski, T., Frank, R., Galaburda, A.M., & Damasio, A.R. (1994). The return of Phineas Gage - Clues about the brain from the skull of a famous patient. Science, 264(5162), 11021105. doi:10.1126/science.8178168 CrossRefGoogle ScholarPubMed
Demaree, H.A., Everhart, D.E., Youngstrom, E.A., & Harrison, D.W. (2005). Brain lateralization of emotional processing: historical roots and a future incorporating “dominance”. Behavioral and Cognitive Neuroscience Reviews, 4(1), 320.CrossRefGoogle Scholar
Dias, R., Robbins, T., & Roberts, A.C. (1997). Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: Restriction to novel situations and independence from “on-line” processing. The Journal of Neuroscience, 17(23), 92859297.Google ScholarPubMed
Fellows, L.K., & Farah, M.J. (2003). Ventromedial frontal cortex mediates affective shifting in humans: Evidence from a reversal learning paradigm. Brain, 126(8), 18301837. doi:10.1093/brain/awg180 CrossRefGoogle ScholarPubMed
Franzen, E., & Myers, R. (1973). Neural control of social behavior: Prefrontal and anterior temporal cortex. Neuropsychologia, 11(2), 141157. doi:10.1016/0028-3932(73)90002-X CrossRefGoogle ScholarPubMed
Gehring, W.J., & Willoughby, A.R. (2004). Are all medial frontal negativities created equal? Toward a richer empirical basis for theories of action monitoring. Errors, Conflicts, and the Brain. Current Opinions on Performance Monitoring, 1420.Google Scholar
Gottfried, J.A., O’Doherty, J., & Dolan, R.J. (2003). Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science, 301(5636), 11041107. doi:10.1126/science.1087919 CrossRefGoogle ScholarPubMed
Gould, K.R., Ponsford, J.L., Johnston, L., & Schonberger, M. (2011). Relationship between psychiatric disorders and 1-year psychosocial outcome following traumatic brain injury. Journal of Head Trauma Rehabilitation, 26(1), 7989. doi:10.1097/Htr.0b013e3182036799 CrossRefGoogle ScholarPubMed
Gregory, C.A., Serra-Mestres, J., & Hodges, J.R. (1999). Early diagnosis of the frontal variant of frontotemporal dementia: How sensitive are standard neuroimaging and neuropsychologic tests? Cognitive and Behavioral Neurology, 12(2), 128135.Google ScholarPubMed
Hajcak, G., Moser, J.S., Holroyd, C.B., & Simons, R.F. (2006). The feedback-related negativity reflects the binary evaluation of good versus bad outcomes. Biological Psychology, 71(2), 148154. doi:10.1016/j.biopsycho.2005.04.001 CrossRefGoogle ScholarPubMed
Hajcak, G., Moser, J.S., Holroyd, C.B., & Simons, R.F. (2007). It’s worse than you thought: The feedback negativity and violations of reward prediction in gambling tasks. Psychophysiology, 44(6), 905912. doi:10.1111/j.1469-8986.2007.00567.x CrossRefGoogle ScholarPubMed
Heberlein, A.S., Padon, A.A., Gillihan, S.J., Farah, M.J., & Fellows, L.K. (2008). Ventromedial frontal lobe plays a critical role in facial emotion recognition. Journal of Cognitive Neuroscience, 20(4), 721733. doi:10.1162/jocn.2008.20049 CrossRefGoogle Scholar
Hikosaka, K., & Watanabe, M. (2004). Long‐and short‐range reward expectancy in the primate orbitofrontal cortex. European Journal of Neuroscience, 19(4), 10461054. doi:10.1111/j.0953-816X.2004.03120.x CrossRefGoogle ScholarPubMed
Holroyd, C.B., & Coles, M.G.H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679709. doi:10.1037/0033-295X.109.4.679 12374324 CrossRefGoogle ScholarPubMed
Holroyd, C.B., & Krigolson, O.E. (2007). Reward prediction error signals associated with a modified time estimation task. Psychophysiology, 44(6), 913917. doi:10.1111/j.1469-8986.2007.00561.x CrossRefGoogle ScholarPubMed
Holroyd, C.B., Krigolson, O.E., Baker, R., Lee, S., & Gibson, J. (2009). When is an error not a prediction error? An electrophysiological investigation. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 5970. doi:10.3758/CABN.9.1.59 CrossRefGoogle Scholar
Holroyd, C.B., Larsen, J.T., & Cohen, J.D. (2004). Context dependence of the event‐related brain potential associated with reward and punishment. Psychophysiology, 41(2), 245253. doi:10.1111/j.1469-8986.2004.00152.x CrossRefGoogle ScholarPubMed
Holroyd, C.B., Nieuwenhuis, S., Yeung, N., & Cohen, J.D. (2003). Errors in reward prediction are reflected in the event-related brain potential. Neuroreport, 14(18), 24812484. doi:10.1097/01.wnr.0000099601.41403.a5 CrossRefGoogle ScholarPubMed
Hornak, J., O’Doherty, J., Bramham, J., Rolls, E.T., Morris, R., Bullock, P., &Polkey, C. (2004). Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. Journal of Cognitive Neuroscience, 16(3), 463478. doi:10.1162/089892904322926791 CrossRefGoogle ScholarPubMed
Hornberger, M., Geng, J., & Hodges, J.R. (2011). Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia. Brain, 134(9), 25022512. doi:10.1093/brain/awr173 CrossRefGoogle ScholarPubMed
Izquierdo, A., Suda, R.K., & Murray, E.A. (2004). Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. The Journal of Neuroscience, 24(34), 75407548. doi:10.1523/JNEUROSCI.1921-04.2004 CrossRefGoogle ScholarPubMed
Kaplan, J.T., & Zaidel, E. (2001). Error monitoring in the hemispheres: The effect of lateralized feedback on lexical decision. Cognition, 82(2), 157178. doi:10.1016/S0010-0277(01)00150-0 CrossRefGoogle ScholarPubMed
Kinnunen, K.M., Greenwood, R., Powell, J.H., Leech, R., Hawkins, P.C., Bonnelle, V., & Sharp, D.J. (2011). White matter damage and cognitive impairment after traumatic brain injury. Brain, 134(2), 449463. doi:10.1093/brain/awq347 CrossRefGoogle ScholarPubMed
Kringelbach, M.L., & Rolls, E.T. (2003). Neural correlates of rapid reversal learning in a simple model of human social interaction. Neuroimage, 20(2), 13711383. doi:10.1016/S1053-8119(03)00393-8 CrossRefGoogle Scholar
Krueger, C.E., Laluz, V., Rosen, H.J., Neuhaus, J.M., Miller, B.L., & Kramer, J.H. (2011). Double dissociation in the anatomy of socioemotional disinhibition and executive functioning in dementia. Neuropsychology, 25(2), 249259. doi:10.1037/a0021681 CrossRefGoogle ScholarPubMed
Larson, M.J., Kelly, K.G., Stigge-Kaufman, D.A., Schmalfuss, I.M., & Perlstein, W.M. (2007). Reward context sensitivity impairment following severe TBI: An event-related potential investigation. Journal of the International Neuropsychological Society, 13(04), 615625.CrossRefGoogle ScholarPubMed
Lipszyc, J., Levin, H., Hanten, G., Hunter, J., Dennis, M., & Schachar, R. (2014). Frontal white matter damage impairs response inhibition in children following traumatic brain injury. Archives of Clinical Neuropsychology, 29(3), 289299. doi:10.1093/arclin/acu004 CrossRefGoogle ScholarPubMed
Lovibond, P.F., & Lovibond, S.H. (1995). The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behaviour Research and Therapy, 33(3), 335343. doi:10.1016/0005-7967(94)00075-U CrossRefGoogle ScholarPubMed
Luu, P., Tucker, D.M., Derryberry, D., Reed, M., & Poulsen, C. (2003). Electrophysiological responses to errors and feedback in the process of action regulation. Psychological Science, 14(1), 4753. doi:10.1111/1467-9280.01417 12564753 CrossRefGoogle ScholarPubMed
Machado, C.J., & Bachevalier, J. (2006). The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 120(4), 761786. doi:10.1037/0735-7044.120.4.761 CrossRefGoogle Scholar
Mattson, A.J., & Levin, H.S. (1990). Frontal lobe dysfunction following closed head injury. A review of the literature. The Journal of Nervous and Mental Disease, 178(5), 282291.CrossRefGoogle ScholarPubMed
McKinlay, W., Brooks, N., Bond, M., Martinage, D., & Marshall, M. (1981). The short-term outcome of severe blunt head injury as reported by relatives of the injured persons. Journal of Neurology, Neurosurgery, & Psychiatry, 44(6), 527533. doi:10.1136/jnnp.44.6.527 CrossRefGoogle ScholarPubMed
Montagne, B., Kessels, R.P.C., De Haan, E.H.F., & Perrett, D.I. (2007). The emotion recognition task: A paradigm to measure the perception of facial emotional expressions at different intensities. Perceptual and Motor Skills, 104(2), 589598. doi:10.2466/Pms.104.2.589-598 CrossRefGoogle ScholarPubMed
Nakamura, K., Kawashima, R., Ito, K., Sugiura, M., Kato, T., Nakamura, A., & Fukuda, H. (1999). Activation of the right inferior frontal cortex during assessment of facial emotion. Journal of Neurophysiology, 82(3), 16101614.Google ScholarPubMed
Namiki, C., Yamada, M., Yoshida, H., Hanakawa, T., Fukuyama, H., & Murai, T. (2008). Small orbitofrontal traumatic lesions detected by high resolution MRI in a patient with major behavioural changes. Neurocase, 14(6), 474479. doi:10.1080/13554790802459494 CrossRefGoogle Scholar
Nieuwenhuis, S., Holroyd, C.B., Mol, N., & Coles, M.G. (2004). Reinforcement-related brain potentials from medial frontal cortex: Origins and functional significance. Neuroscience & Biobehavioral Reviews, 28(4), 441448. doi:10.1016/j.neubiorev.2004.05.003 CrossRefGoogle ScholarPubMed
Padoa-Schioppa, C., & Assad, J.A. (2006). Neurons in the orbitofrontal cortex encode economic value. Nature, 441(7090), 223226. doi:10.1038/nature04676 CrossRefGoogle ScholarPubMed
Rahman, S., Sahakian, B.J., Hodges, J.R., Rogers, R.D., & Robbins, T.W. (1999). Specific cognitive deficits in mild frontal variant frontotemporal dementia. Brain, 122(8), 14691493. doi:10.1093/brain/122.8.1469 CrossRefGoogle ScholarPubMed
Rolls, E.T., Hornak, J., Wade, D., & McGrath, J. (1994). Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. Journal of Neurology, Neurosurgery, & Psychiatry, 57(12), 15181524. doi:10.1136/jnnp.57.12.1518 CrossRefGoogle ScholarPubMed
Rosenberg, H., McDonald, S., Dethier, M., Kessels, R.P.C., & Westbrook, R.F. (2014). Facial emotion recognition deficits following moderate-severe traumatic brain injury (TBI): Re-examining the valence effect and the role of emotion intensity. Journal of the International Neuropsychological Society, 20(10), 9941003. doi:10.1017/S1355617714000940 CrossRefGoogle ScholarPubMed
Russell, W.R., & Smith, A. (1961). Post-traumatic amnesia in closed head injury. Archives of Neurology, 5(1), 417.CrossRefGoogle ScholarPubMed
Sambrook, T.D., & Goslin, J. (2015). A neural reward prediction error revealed by a meta-analysis of ERPs using great grand averages. Psychological Bulletin, 141(1), 213235. doi:10.1037/bul0000006 CrossRefGoogle ScholarPubMed
Schoenbaum, G., Nugent, S.L., Saddoris, M.P., & Setlow, B. (2002). Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport, 13(6), 885890.CrossRefGoogle Scholar
Schoenbaum, G., Roesch, M.R., Stalnaker, T.A., & Takahashi, Y.K. (2009). A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nature Reviews. Neuroscience, 10(12), 885892. doi:10.1038/nrn2753 Google ScholarPubMed
Schoenbaum, G., Takahashi, Y., Liu, T.L., & McDannald, M.A. (2011). Does the orbitofrontal cortex signal value? Annals of the New York Academy of Sciences, 1239(1), 8799. doi:10.1111/j.1749-6632.2011.06210.x CrossRefGoogle ScholarPubMed
Semlitsch, H.V., Anderer, P., Schuster, P., & Presslich, O. (1986). A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 23(6), 695703. doi:10.1111/j.1469-8986.1986.tb00696.x CrossRefGoogle ScholarPubMed
Tate, R.L., Broe, G.A., & Lulham, J.M. (1989). Impairment after severe blunt head-injury - The results from a consecutive series of 100 patients. Acta Neurologica Scandinavica, 79(2), 97107. doi:10.1111/j.1600-0404.1989.tb03719.x CrossRefGoogle ScholarPubMed
van der Helden, J., Boksem, M.A., & Blom, J.H. (2010). The importance of failure: Feedback-related negativity predicts motor learning efficiency. Cerebral Cortex, 20(7), 15961603. doi:10.1093/cercor/bhp224 CrossRefGoogle ScholarPubMed
Walsh, M.M., & Anderson, J.R. (2011a). Learning from delayed feedback: Neural responses in temporal credit assignment. Cognitive, Affective, & Behavioral Neuroscience, 11(2), 131143. doi:10.3758/s13415-011-0027-0 CrossRefGoogle ScholarPubMed
Walsh, M.M., & Anderson, J.R. (2011b). Modulation of the feedback-related negativity by instruction and experience. Proceedings of the National Academy of Sciences of the United States of America, 108(47), 1904819053. doi:10.1073/pnas.1117189108 CrossRefGoogle ScholarPubMed
Yasuda, A., Sato, A., Miyawaki, K., Kumano, H., & Kuboki, T. (2004). Error-related negativity reflects detection of negative reward prediction error. Neuroreport, 15(16), 25612565.CrossRefGoogle ScholarPubMed
5
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Role of Reversal Learning Impairment in Social Disinhibition following Severe Traumatic Brain Injury
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Role of Reversal Learning Impairment in Social Disinhibition following Severe Traumatic Brain Injury
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Role of Reversal Learning Impairment in Social Disinhibition following Severe Traumatic Brain Injury
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *