Hostname: page-component-cd4964975-8cclj Total loading time: 0 Render date: 2023-03-27T17:39:01.303Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

NIH Toolbox Cognition Battery (NIHTB-CB): List Sorting Test to Measure Working Memory

Published online by Cambridge University Press:  24 June 2014

David S. Tulsky*
Rusk Institute/Department of Rehabilitation Medicine, Department of Orthopedic Surgery, Department of General Medicine, New York University Langone Medical Center, New York, New York Spinal Cord Injury Laboratory, Neuropsychology and Neuroscience Laboratory, Kessler Foundation, New Jersey
Noelle Carlozzi
Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan
Nancy D. Chiaravalloti
Spinal Cord Injury Laboratory, Neuropsychology and Neuroscience Laboratory, Kessler Foundation, New Jersey
Jennifer L. Beaumont
Department of Medical Social Sciences, Northwestern University, Chicago, Illinois
Pamela A. Kisala
Rusk Institute/Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, New York
Dan Mungas
Department of Neurology, University of California, Davis, California
Kevin Conway
National Institute on Drug Abuse, Rockville, Maryland
Richard Gershon
Department of Medical Social Sciences, Northwestern University, Chicago, Illinois
Correspondence and reprint requests to: David S. Tulsky, Assessment Research and Translation, Rusk Institute/Department of Rehabilitation Medicine, New York University Langone Medical Center, Ambulatory Care Center 240 E. 38th Street, 17th Floor, New York, New York 10016. E-mail:


The List Sorting Working Memory Test was designed to assess working memory (WM) as part of the NIH Toolbox Cognition Battery. List Sorting is a sequencing task requiring children and adults to sort and sequence stimuli that are presented visually and auditorily. Validation data are presented for 268 participants ages 20 to 85 years. A subset of participants (N=89) was retested 7 to 21 days later. As expected, the List Sorting Test had moderately high correlations with other measures of working memory and executive functioning (convergent validity) but a low correlation with a test of receptive vocabulary (discriminant validity). Furthermore, List Sorting demonstrates expected changes over the age span and has excellent test–retest reliability. Collectively, these results provide initial support for the construct validity of the List Sorting Working Memory Measure as a measure of working memory. However, the relationship between the List Sorting Test and general executive function has yet to be determined. (JINS, 2014, 20, 1–12)

Special Series
Copyright © The International Neuropsychological Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alloway, T.P., Gathercole, S.E., & Pickering, S.J. (2006). Verbal and visuospatial short-term and working memory in children: Are they separable? Child Development, 77(6), 16981716.CrossRefGoogle Scholar
Awh, E., Jonides, J., Smith, E.E., Schumacher, E.H., Koeppe, R.A., & Katz, S. (1996). Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography. Psychological Science, 7(1), 2531.CrossRefGoogle Scholar
Baddeley, A. (1986). Working memory. Oxford, England: Oxford University Press.CrossRefGoogle Scholar
Baddeley, A. (1987). Working memory (Vol. 11). Gloucestershire: Clarendon Press.Google Scholar
Baddeley, A. (1992). Working memory. Science, 255(5044), 556559.CrossRefGoogle Scholar
Baddeley, A. (1996). Exploring the central executive. Quarterly Journal of Experimental Psychology, 49A, 528.CrossRefGoogle Scholar
Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417423.CrossRefGoogle Scholar
Baddeley, A. (2001). Is working memory still working? American Psychologist, 56(11), 851864.CrossRefGoogle Scholar
Baddeley, A. (2002). Is working memory still working? European Psychologist, 7(2), 8597.CrossRefGoogle Scholar
Baddeley, A. (2010). Working Memory. Current Biology, 20(4), R136R140.CrossRefGoogle Scholar
Baddeley, A., & Hitch, G.J. (1974). Working Memory. In G.H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 4790). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Beatty, W.W., Wilbanks, S.L., Blanco, C.R., Hames, K.A., Tivis, R., & Paul, R.H. (1996). Memory disturbance in multiple sclerosis: Reconsideration of patterns of performance on the selective reminding test. Journal of Clinical and Experimental Neuropsychology, 18(1), 5662. doi:10.1080/01688639608408262CrossRefGoogle Scholar
Belger, A., Puce, A., Krystal, J.H., Gore, J.C., Goldman-Rakic, P., & McCarthy, G. (1998). Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Human Brain Mapping, 6(1), 1432.CrossRefGoogle Scholar
Braver, T.S., Cohen, J.D., Nystrom, L.E., Jonides, J., Smith, E.E., & Noll, D.C. (1997). A parametric study of prefrontal cortex involvement in human working memory. Neuroimage, 5, 4962.CrossRefGoogle Scholar
Chiaravalloti, N., Hillary, F., Ricker, J., Christodoulou, C., Kalnin, A., Liu, W.C., DeLuca, J. (2005). Cerebral activation patterns during working memory performance in multiple sclerosis using FMRI. Journal of Clinical and Experimental Neuropsychology, 27(1), 3354.CrossRefGoogle Scholar
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155159.CrossRefGoogle ScholarPubMed
Conlin, J.A., Gathercole, S.E., & Adams, J.W. (2005). Children’s working memory: Investigating performance limitations in complex span tasks. Journal of Experimental Child Psychology, 90(4), 303317.CrossRefGoogle ScholarPubMed
Conway, A.R., Kane, M.J., Bunting, M.F., Hambrick, D.Z., Wilhelm, O., & Engle, R.W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769786.CrossRefGoogle Scholar
Courtney, S.M., Ungerleider, L.G., Keil, K., & Haxby, J.V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386(6625), 608611.CrossRefGoogle Scholar
Cronbach, L.J., & Meehl, P.E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52, 281302.CrossRefGoogle Scholar
Crone, E.A., Wendelken, C., Donohue, S., van Leijenhorst, L., & Bunge, S.A. (2006). Neurocognitive development of the ability to manipulate information in working memory. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 93159320.CrossRefGoogle Scholar
Crosson, B., Rao, S.M., Woodley, S.J., Rosen, A.C., Bobholz, J.A., Mayer, A., Stein, E.A. (1999). Mapping of semantic, phonological, and orthographic verbal working memory in normal adults with functional magnetic resonance imaging. Neuropsychology, 13(2), 171187.CrossRefGoogle Scholar
Crowe, S.F. (2000). Does the letter number sequencing task measure anything more than digit span? Assessment, 7(2), 113117.CrossRefGoogle Scholar
Curtis, C.E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415423.CrossRefGoogle Scholar
D’Esposito, M., Aguirre, G.K., Zarahn, E., Ballard, D., Shin, R.K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7(1), 113.CrossRefGoogle ScholarPubMed
D’Esposito, M., Onishi, K., Thompson, H., Robinson, K., Armstrong, C., & Grossman, M. (1996). Working memory impairments in multiple sclerosis. Neuropsychology, 10, 5156.CrossRefGoogle Scholar
de Jong, P.F. (1998). Working memory deficits of reading disabled children. Journal of Experimental Child Psychology, 70(2), 7596.CrossRefGoogle Scholar
de Jong, P.F., & Olson, R.K. (2004). Early predictors of letter knowledge. Journal of Experimental Child Psychology, 88(3), 254273.CrossRefGoogle ScholarPubMed
Demaree, H.A., DeLuca, J., Gaudino, E.A., & Diamond, B.J. (1999). Speed of information processing as a key deficit in multiple sclerosis: Implications for rehabilitation. Journal of Neurology, Neurosurgery, & Psychiatry, 67(5), 661663.CrossRefGoogle ScholarPubMed
Dempster, F.N. (1981). Memory span - Sources of individual and developmental differences. Psychological Bulletin, 89(1), 63100.CrossRefGoogle Scholar
Donders, J., Tulsky, D.S., & Zhu, J. (2001). Criterion validity of new WAIS-II subtest scores after traumatic brain injury. Journal of the International Neuropsychological Society, 7(7), 892898.CrossRefGoogle Scholar
Dunn, L.M., & Dunn, D.M. (2007). Peabody Picture Vocabulary Test - Fourth edition. Minneapolis, MN: NCS Pearson.CrossRefGoogle Scholar
Edin, F., Klingberg, T., Johansson, P., McNab, F., Tegner, J., & Compte, A. (2009). Mechanism for top-down control of working memory capacity. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 68026807.CrossRefGoogle ScholarPubMed
Edin, F., Macoveanu, J., Olesen, P., Tegner, J., & Klingberg, T. (2007). Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. Journal of Cognitive Neuroscience, 19(5), 750760.CrossRefGoogle Scholar
Engle, R.W. (1996). Working memory and retrieval: An inhibition-resource approach. In J. Richardson (Ed.), Working memory and human cognition (pp. 89119). New York: Oxford University Press.CrossRefGoogle Scholar
Fuster, J.M. (1989). The prefrontal cortex. New York: Raven Press.CrossRefGoogle Scholar
Gathercole, S.E., Pickering, S.J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177190.CrossRefGoogle Scholar
Gershon, R.C., Cella, D., Fox, N.A., Havlik, R.J., Hendrie, H.C., & Wagster, M.V. (2010). Assessment of neurological and behavioural function: The NIH Toolbox. Lancet Neurology, 9(2), 138139.CrossRefGoogle Scholar
Gershon, R.C., Wagster, M.V., Hendrie, H.C., Fox, N.A., Cook, K.F., & Nowinski, C.J. (2013). NIH Toolbox for assessment of neurological and behavioral function. Neurology, 80(Suppl. 3), S2S6.CrossRefGoogle Scholar
Gold, J.M., Carpenter, C., Randolph, C., Goldberg, T.E., & Weinberger, D.R. (1997). Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. Archives of General Psychiatry, 54(2), 159165.CrossRefGoogle Scholar
Goldman-Rakic, P.S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In V.B. Mountcastle (Ed.), Handbook of physiology (pp. 373417). Bethesda, MD: American Psychological Society.CrossRefGoogle Scholar
Grigsby, J., Ayarbe, S., Kravcisin, N., & Busenbark, D. (1994). Working memory impairment among persons with chronic-progressive multiple sclerosis. Journal of Neurology, 241(3), 125131.CrossRefGoogle Scholar
Grigsby, J., Busenbark, D., Kravcisin, N., Kennedy, P.M., & Taylor, D. (1994). Impairment of the working memory system in relapsing-remitting multiple sclerosis. Archives of Clinical Neuropsychology, 9, 134135.CrossRefGoogle Scholar
Gronwall, D.M. (1977). Paced auditory serial-addition task: A measure of recovery from concussion. Perceptual & Motor Skills, 44(2), 367373.CrossRefGoogle ScholarPubMed
Grossman, M., Armstrong, C., Onishi, K., Thompson, H., Schaefer, B., Robinson, K., Silberberg, D. (1994). Patterns of cognitive impairment in relapsing-remitting and chronic progressive multiple-sclerosis. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 7(3), 194210.Google Scholar
Hasher, L., Stolzfus, E.R., Zacks, R.T., & Rypma, B. (1991). Age and inhibition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(1), 163169.CrossRefGoogle Scholar
Haut, M.W., Kuwabara, H., Leach, S., & Arias, R.G. (2000). Neural activation during performance of number-letter sequencing. Applied Neuropsychology, 7(4), 237242.CrossRefGoogle Scholar
Hawkins, K.A. (1998). Indicators of brain dysfunction derived from graphic representations of the WAIS-III/WMS-III Technical Manual clinical samples data: A preliminary approach to clinical utility. The Clinical Neuropsychologist, 12(4), 535551.CrossRefGoogle Scholar
Heaton, R.K., Taylor, M.J., & Manly, J. (2003). Demographic effects and use of demographically corrected norms with the WAIS-III and WMS-III. In D.S. Tulsky (Ed.), Clinical interpretation of the WAIS-III and WMS-III (pp. 181210). San Diego: Academic Press.CrossRefGoogle Scholar
Hitch, G.J., Towse, J.N., & Hutton, U. (2001). What limits children’s working memory span? Theoretical accounts and applications for scholastic development. Journal of Experimental Psychology-General, 130(2), 184198.CrossRefGoogle Scholar
Hodes, R.J., Insel, T.R., & Landis, S.C. (2013). The NIH Toolbox: Setting a standard for biomedical research. Neurology, 80(Suppl. 3), S1.CrossRefGoogle Scholar
Hofmann, W., Schmeichel, B.J., & Baddeley, A.D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16(3), 174180. doi:10.1016/j.tics.2012.01.006.CrossRefGoogle Scholar
Jacobsen, C.F. (1935). Functions of frontal association area in primates. Archives of Neurology and Psychiatry, 33(3), 558569.CrossRefGoogle Scholar
Jonides, J. (1995). Working memory and thinking. In E.E. Smith & D.N. Osherson (Eds.), Invitation to cognitive science: Thinking (2nd ed., Vol. 3, pp. 215265). Cambridge, MA: MIT Press.Google Scholar
Kirasic, K., Allen, G., Dobson, S., & Binder, K. (1996). Aging, cognitive resources, and declarative learning. Psychology and Aging, 11, 658670.CrossRefGoogle Scholar
Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. Journal of Cognitive Neuroscience, 14(1), 110.CrossRefGoogle Scholar
Klingberg, T., Kawashima, R., & Roland, P.E. (1996). Activation of multi-modal cortical areas underlies short-term memory. European Journal of Neuroscience, 8(9), 19651971.CrossRefGoogle Scholar
Kongs, S.K., Thompson, L.L., Iverson, G.L., & Heaton, R. (2000). Wisconsin card sorting test - 64 card version: Professional manual. Odessa, FL: Psychological Assessment Resources.CrossRefGoogle Scholar
Kwon, H., Reiss, A.L., & Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory Proceedings of the National Academy of Sciences of the United States of America, 99(20), 1333613341.CrossRefGoogle Scholar
Kyllonen, P.C., & Christal, R.E. (1990). Reasoning ability is (little more than) working-memory capacity? Intelligence, 14, 389433.CrossRefGoogle Scholar
Lehto, J. (1996). Are executive function tests dependent on working memory capacity? The Quarterly Journal of Experimental Psychology, 49A(1), 2950.CrossRefGoogle Scholar
Linden, D.E. (2007). The working memory networks of the human brain. Neuroscientist, 13(3), 257267.CrossRefGoogle Scholar
Litvan, I., Grafman, J., Vendrell, P., & Martinez, J.M. (1988). Slowed information processing in multiple sclerosis. Archives of Neurology, 45(3), 281285.CrossRefGoogle Scholar
Logie, R.H. (1996). The seven ages of working memory. In J. Richardson (Ed.), Working memory and human cognition (pp. 3165). New York: Oxford University Press.CrossRefGoogle Scholar
Manoach, D.S., Schlaug, G., Siewert, B., Darby, D.G., Bly, B.M., Benfield, A., Warach, S. (1997). Prefrontal cortex fMRI signal changes are correlated with working memory load. Neuroreport, 8(2), 545549.CrossRefGoogle Scholar
Martin, T. A., Donders, J., & Thompson, E. (2000). Potential of and problems with new measures of psychometric intelligence after traumatic brain injury. Rehabilitation Psychology, 45(4), 402408.CrossRefGoogle Scholar
McAllister, T.W., Flashman, L.A., Sparling, M.B., & Saykin, A.J. (2004). Working memory deficits after traumatic brain injury: Catecholaminergic mechanisms and prospects for treatment -- A review. Brain Injury, 18(4), 331350.CrossRefGoogle ScholarPubMed
McAllister, T.W., Saykin, A.J., Flashman, L.A., Sparling, M.B., Johnson, S.C., Guerin, S.J., Yanofsky, N. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: A functional MRI study. Neurology, 53(6), 13001308.CrossRefGoogle ScholarPubMed
McAuley, T., & White, D.A. (2011). A latent variables examination of processing speed, response inhibition, and working memory during typical development. Journal of Experimental Child Psychology, 108(3), 453468.CrossRefGoogle Scholar
McCabe, D.P., Roediger, H.L., McDaniel, M.A., Balota, D.A., & Hambrick, D.Z. (2010). The relationship between working memory capacity and executive functioning: Evidence for a common executive attention construct. Neuropsychology, 24, 222243.CrossRefGoogle ScholarPubMed
Messick, S. (1980). Test validity and the ethics of assessment. American Psychologist, 35(11), 10121027.CrossRefGoogle Scholar
Messick, S. (1991). Validity of test interpretation and use. In M.C. Alkin (Ed.), Encyclopedia of educational research (6th ed.), New York: Macmillan.CrossRefGoogle Scholar
Miller, G.A. (1956). The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 8197.CrossRefGoogle Scholar
Milner, B. (1964). Some effects of frontal lobectomy in man. In J.M. Warren & K. Akert (Eds.), The frontal granular cortex and behavior (pp. 313334). New York: McGraw-Hill.CrossRefGoogle Scholar
Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., & Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100.CrossRefGoogle Scholar
Miyake, A., & Shah, P. (Eds.) (1999). Models of working memory: Mechanisms of active maintenance and executive control. New York: Cambridge University Press.CrossRefGoogle Scholar
Mungas, D., Reed, B.R., Marshall, S.C., & Gonzalez, H.M. (2000). Development of psychometrically matched English and Spanish language neuropsychological tests for older persons. Neuropsychology, 14(2), 209223.CrossRefGoogle Scholar
Newell, A. (1973). Productions systems: Models of control structures. In W.G. Chase (Ed.), Visual information processing (pp. 463526). New York: Academic Press.CrossRefGoogle Scholar
Newell, A., & Simon, H.A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.CrossRefGoogle Scholar
Orellana, G., & Slachevsky, A. (2013). Executive functioning in schizophrenia. Frontiers in Psychiatry, 4, 35. doi:10.3389/fpsyt.2013.00035CrossRefGoogle Scholar
Owen, A.M., Evans, A.C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: A positron emission tomography study. Cerebral Cortex, 6(1), 3138.CrossRefGoogle Scholar
Paulesu, E., Frith, C.D., & Frackowiak, R.S. (1993). The neural correlates of the verbal component of working memory. Nature, 362(6418), 342345.CrossRefGoogle Scholar
Pelphrey, K.A., & Reznick, J.S. (2003). Working memory in infancy. Advances in Child Development and Behavior, 31, 173227.CrossRefGoogle Scholar
Rao, S.M., Grafman, J., DiGiulio, D., Mittenberg, W., Bernardin, L., Leo, G.J., Unverzagt, F. (1993). Memory dysfunction in multiple sclerosis: Its relation to working memory, semantic encoding and implicit learning. Neuropsychology, 7(3), 364374.CrossRefGoogle Scholar
Repovs, G., & Bresjanak, M. (2006). Cognitive neuroscience of working memory. Neuroscience, 139, 1413.CrossRefGoogle Scholar
Riggs, K., McTaggart, J., & Simpson, A. (2006). Changes in the capacity of visual working memory in 5- to 10-year-olds. Journal of Experimental Child Psychology, 95, 1826.CrossRefGoogle Scholar
Salmon, E., Van der Linden, M., Collette, F., Delfiore, G., Maquet, P., Degueldre, C., Franck, G. (1996). Regional brain activity during working memory tasks. Brain, 119(Pt 5), 16171625.CrossRefGoogle Scholar
Salthouse, T. (1994). The aging of working memory. Neuropsychology, 8(4), 535543.CrossRefGoogle Scholar
Salthouse, T., Mitchell, D.R., Skovronek, E., & Babcock, R.L. (1989). Effects of adult age and working memory on reasoning and spatial abilities. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(3), 507516.CrossRefGoogle Scholar
Scherf, K.S., Sweeney, J.A., & Luna, B. (2006). Brain basis of developmental change in visuospatial working memory. Journal of Cognitive Neuroscience, 18(7), 10451058.CrossRefGoogle Scholar
Schmiedek, F., Hildebrandt, A., Lovden, M., Lindenberger, U., & Wilhelm, O. (2009). Complex span versus updating tasks of working memory: The gap is not that deep. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(4), 10891096.CrossRefGoogle Scholar
Seidman, L.J., Breiter, H.C., Goodman, J.M., Goldstein, J.M., Woodruff, P.W.R., & Rosen, B.R. (1998). A functional magnetic resonance imaging study of auditory vigilance with low and high information processing demands. Neuropsychology, 12(4), 505518.CrossRefGoogle Scholar
Smith, E.E., Jonides, J., & Koeppe, R.A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6(1), 1120.CrossRefGoogle Scholar
Strauss, E., Sherman, E.M.S., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary (3rd ed.). New York: Oxford University Press.CrossRefGoogle Scholar
Tulsky, D.S., Carlozzi, N.E., Chevalier, N., Espy, K., Beaumont, J., & Mungas, D. (2013). NIH Toolbox Cognitive Function Battery (CFB): Measuring working memory. Society For Research In Child Development, Monograph, 78(4), 7087.CrossRefGoogle Scholar
Tulsky, D.S., Saklofske, D.H., & Zhu, J. (2003). Revising a Standard: Evaluation of the Origin and Development of the WAIS-III. Clinical Interpretation of the WAIS-III and WMS-III (pp. 4392). San Diego: Elsevier Science.CrossRefGoogle Scholar
Van Snellenberg, J.X. (2009). Working memory and long-term memory deficits in schizophrenia: Is there a common substrate? Psychiatry Research, 174(2), 8996.CrossRefGoogle Scholar
Vugs, B., Hendriks, M., Cuperus, J., & Verhoeven, L. (2014). Working memory performance and executive function behaviors in young children with SLI. Research in Developmental Disabilities, 35(1), 6274.CrossRefGoogle Scholar
Wechsler, D. (1952). The range of human capacities. Baltimore: The Williams & Wilkins Company.CrossRefGoogle Scholar
Wechsler, D. (1997). WAIS-III Administration and Scoring Manual. San Antonio: The Psychological Corporation.CrossRefGoogle Scholar
Wechsler, D. (2008). Wechsler Adult Intelligence Scale IV. San Antonio: Harcourt Assessment Inc.CrossRefGoogle Scholar
Weintraub, S., Dikmen, S.S., Heaton, R.K., Tulsky, D.S., Zelazo, P.D., Bauer, P.J., Gershon, R.C. (2013). Cognition assessment using the NIH Toolbox. Neurology, 80(11 Suppl. 3), S54S64.CrossRefGoogle Scholar
Willmott, C., Ponsford, J., Hocking, C., & Schönberger, M. (2009). Factors contributing to attentional impairments after traumatic brain injury. Neuropsychology, 23(4), 424432.CrossRefGoogle Scholar
Woods, S.P., Moore, D.J., Weber, E., & Grant, I. (2009). Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychology Review, 19(2), 152168.CrossRefGoogle Scholar
You, S.C., Geschwind, M.D., Sha, S.J., Apple, A., Satris, G., Wood, K.A., Possin, K.L. (2013). Executive functions in premanifest Huntington’s disease. Movement Disorders, 29(Suppl. 3), 405409.CrossRefGoogle Scholar
Zelazo, P.D., Andersen, J., Richler, J., Wallner-Allen, K., Beaumont, J., & Weintraub, S. (2013). NIH Toolbox Cognitive Function Battery (CFB): Measuring executive function and attention. Society For Research In Child Development, Monograph, 78(4), 1633.CrossRefGoogle Scholar